# А. К. Баев, И. Л. Гайдым, Н. А. Белозерский, О. Д. Кричевская

## ИЗУЧЕНИЕ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ГЕКСАКАРБОНИЛА ВОЛЬФРАМА

- I'll a go aile

Исследование термического разложения гексакарбонила вольфрама [1] проведено статическим методом в атмосфере инертного газа, и получены значения кажущейся энергии активации, равные 39,6— 45,8 ккал/моль. Однако эти величины установлены без учета влияния давления окиси углерода и металлической поверхности. Нами проведе-



Рис. 1. Зависимость P = f(T) термического разложения  $W(CO)_6$  сублимации (*a*), разложения (*б*, *в*), десорбции CO (*c*) и разложения окиси углерода на металле (*d*) по данным статического метода.

но изучение термического разложения  $W(CO)_6$  в широком интервале температур.

Исследование проведено статическим с мембранным нульманометром [2] и квазистатическим методами. Рахложение карбонила вольфрама в промежуточной температурной области проведено с помощью метода, использованного в работах [3, 4]).

Результаты исследования первым методом в интервале 157,5— 185,5°С приведены в виде зависимости общего давления от температуры на рис. 1. Исследования показали, что после перехода в пар (линия a) заметное разложение наступает при температуре выше 150°С в отличие от приведенной в литературе [1] температуры 215°С. При давлении углерода 100—200 мм рт. ст. разложение W(CO)<sub>6</sub> резко тормозится (линия  $\delta$ ). Последующее повышение температуры приводит к разложению карбонила (линия e).

Количества окиси углерода, вычисленные по схеме  $W(CO)_6 = W + +6CO$  и установленные экспериментально, не согласуются между собой, что следует связать с адсорбцией окиси углерода на металлическом мелкодисперсном порошке вольфрама. На это указывает увеличение давления окиси углерода (линия *c*) по сравнению с линией, отвечающей газовому расширению. При температуре выше 500°C осуществляется распад окиси углерода (линия *d*) по схеме 2(CO) =[C]+ (CO)<sub>3</sub>.

Математическая обработка экспериментальных данных проведена с помощью уравнений [5,6—9]

$$1 - \sqrt[3]{1 - \alpha} = kt, \tag{1}$$

$$\alpha = 1 - e^{-k', t^n}, \tag{2}$$

где са — доля разложившегося карбонила,

К, К' — константы скорости,

*t* — время,

n — кинетический параметр, характеризующий порядок реакции.

Степень и скорости разложения гексакарбонила вольфрама представлены в табл. 1. Используя зависимость  $\lg[-\lg(1-\alpha)] = f(\lg t)$ , мы рассчитали значения кинетического параметра. Близость полученных значений к 1 указывает на то, что реакция термического разложения гексакарбонила вольфрама протекает в кинетической области и подчиняется реакции первого порядка.

Таблица 1

Кинетический параметр и константы скорости (мин <sup>-1</sup>) разложения гексакарбонила вольфрама по данным статического метода

|       | 7 80                                      | K                                                                                      |                                                                                                                                      |                                      |
|-------|-------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 7, °C |                                           | (1)                                                                                    | (2)                                                                                                                                  | n                                    |
|       | 157,5<br>162,0<br>166,2<br>171,0<br>185,5 | $9,1 \cdot 10 - 4 6,2 \cdot 10 - 4 8,2 \cdot 10 - 4 9,4 \cdot 10 - 4 1,3 \cdot 10 - 3$ | $\begin{array}{c} 3, 1 \cdot 10 - 4 \\ 6, 1 \cdot 10 - 4 \\ 6, 9 \cdot 10 - 4 \\ 6, 9 \cdot 10 - 4 \\ 1, 6 \cdot 10 - 3 \end{array}$ | 0,85<br>0,81<br>0,80<br>0,82<br>0,83 |

Энергия активации и предэкспоненциальный множитель уравнения Аррениуса, вычисленные с помощью уравнений (1) и (2), имеют одинаковое значение:  $E = 20,6 \pm 1,5$  ккал/моль и  $A = 1 \cdot 10^7$ .

Имеющиеся в литературе сведения по термическому разложению твердых веществ реакций типа

$$AB_{\mathrm{tb}} = A_{\mathrm{tb}} + B_{\mathrm{rag}}$$

указывают на то, что значение энергии активации может сильно зависеть от давления газообразного продукта реакции [10]. Поэтому мы провели изучение термического разложения W(CO)<sub>6</sub> квазистатическим методом в интервале 300—480°C.

Некоторые экспериментальные данные представлены на рис. 2 в

32

виде зависимости степени разложения от времени. Давление окиси углерода после полного разложения составляло 1 атм.

Значения констант скорости разложения  $W(CO)_6$ , установленные из графика зависимости  $1 - \sqrt[3]{1-\alpha} = f(t)$  или  $\lg(1-\alpha) = f(t)$ , представлены в табл. 2.

Энергии активации, рассчитанные по двум рядам констант скорости разложения, соответственно равны  $E_1 = 3.7 \pm 0.9$  и  $E_2 = 4.2 \pm 0.3$  ккал/моль.



Предэкспоненциальный множитель уравнения Аррениуса имеет значения  $A_1 = 7,9 \cdot 10^{-2}$  и  $A_2 = 1,2 \cdot 10^{-1}$ . Произведя математическую обарботку экспериментальных данных, полученных в промежуточной температурной области статического и квазистатического метода в интервале 230—280°С, мы получили значение энергии активации, равное  $37,0 \pm \pm 1,0$  ккал/моль.

#### Таблица 2

Кинетический параметр и константы скорости (сек <sup>-1</sup>) разложения гексакарбонила вольфрама по данным квазистатического метода

| 7. 90                    | К                                                                                                            |                                                    |                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|
| 1, 0                     | (1)                                                                                                          | (2)                                                | n                            |
| 300<br>350<br>380<br>400 | $\begin{array}{r} 4,75 \cdot 10 - 3 \\ 5,5 \cdot 10 - 3 \\ 7,1 \cdot 10 - 3 \\ 8,2 \cdot 10 - 3 \end{array}$ | $7,7\cdot10-38,5\cdot10-31,1\cdot10-21,6\cdot10-2$ | 1,66<br>1,53<br>1,13<br>1,24 |

При анализе полученных данных нетрудно заметить, что значение энергии активации возрастает по мере снижения температуры. Качественное изучение процесса разложения гексакарбонила вольфрама с использованием глицеринового термостата для визуального наблюдения позволило установить, что с ростом температуры скорость этого процесса превышает скорость его сублимации. Как следствие этого распространение металлической поверхности по высоте реакционной части прибора уменьшается и при температуре 480°С ограничивается нижней частью прибора. Таким образом, увеличение значения энергии активации взаимосвязано с адсорбцией окиси углерода на металлическом мелкодисперсном вольфраме. С понижением температуры это проявляется в большей мере.

| 430 | 7,9.10-3 | 1,3.10-2      | 1,26 |
|-----|----------|---------------|------|
| 460 | 8,5.10-3 | $1,4.10^{-2}$ | 1,25 |
| 480 | 9,1.103  | 1,8.10-2      | 1,42 |

### Выводы

 Статическим методом с мембранным нуль-манометром проведено изучение термического разложения гексакарбонила вольфрама.
Экспериментально установленная энергия активации в темпера-

2. Экспериментально установленная энергия активации в температурном интервале 157,5—185,5°С равна 20,6±1,5 ккал/моль.

3. Значение энергии активации, полученной квазистатическим методом в интервале температур  $300-480^{\circ}$ С и установленной по двум независимым уравнениям, имеет значение  $3,7\pm0,9$  и  $4,2\pm0,3$  ккал/моль.

4. Значение энергии активации, полученное в промежуточной температурной области, равно 3,7±10 ккал/моль.

5. Показано влияние окиси углерода и металлической поверхности на процесс термического разложения.

#### Литература

[1] А. МіНазсh. Diss. (1902). См. Н. А. Белозерский. Карбонилы металлов. М., 1958. [2] С. А. Щукарев, Г. И. Новиков. Зав. лаб., 1 (1965) [3] Л. Д. Сегаль, О. Д. Кричевская, Н. А. Белозерский, Н. Е. Колобова, К. Н. Анисимов. ЖНХ, 12, 5 (1966). [4] О. Д. Кричевская, Н. А. Белозерский. ЖНХ, 8, 8 (1963). [5] Аυгаті. G. Chem. Phus. 7 (1939); 8, 212 (1940); 9, 177 (1941). [6] С. З. Рогинский, Е. Шульц. Укр. хим. ж. 3, 177 (1928); Z. Phus. Chem. A 138, 21 (1928). [7] А. Н. Колмогоров. Изв. АН СССР, отд. матем. наук, 3 (1937). [8] В. В. Ерофей. ДАН СССР, 52 (1946). [9] С. А. Казеев. Металлург, 6 (1936). [10] Н. М. Павлюченко, Е. А. Продан. В сб.: Гетерогенные химические реакции. Минск, 68 (1961).