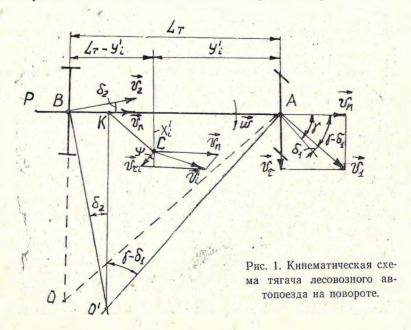
ЛЕСОЭКСПЛУАТАЦИЯ

УДК 629.114.3.001.2

АНАЛИТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ТРАЕКТОРИЙ ХАРАКТЕРНЫХ ТОЧЕК ЛЕСОВОЗНЫХ ТЯГАЧЕЙ ПРИ ДЕИЖЕНИИ НА ПОВОРОТЕ


А. В. ЖУКОВ, А. И. КИРИЛЬЧИК Белорусский технологический институт

Движение лесовозного автопоезда на повороте представляет сложное плоско-параллельное движение, которое совершает как тягач автопоезда, так и прицепное звено (дышло и прицеп-роспуск с хлыстами). Изучение маневренности лесовозного автопоезда и вписывания его в поворот требует предварительного анализа кинематических свойств тягача. Последние можно оценить траекториями характерных точек. Например, габаритная полоса движения (ГПД) определяется разницей траекторий крайней передней точки бампера и противоположной крайней задней точки тяговой балки тягача. Важно также определить траекторию движения точки сцепки тягача, необходимую для расчета и проектирования систем управления лесовозного автопоезда.

В работах [2, 3] рассматривались вопросы определения траектории характерных точек транспортного средства на повороте, но полученные выражения имеют ряд допущений, снижающих точность при оп-

ределении траекторий на переходных кривых.

На рис. 1 показана схема положения тягача лесовозного автопоезда на повороте. Задающими факторами для определения траектории характерных точек тягача являются: координаты расположения точек,

закон изменения линейной скорости тягача при движении на повороте v=v(t) и закон изменения положения управляемых колес тягача $\gamma = \gamma(t)$.

Мгновенную угловую скорость поворота тягача можно определить

из выражения

$$\omega = \frac{v_2 \cos \delta_2}{KL_T} \operatorname{tg} (\gamma - \delta_1), \tag{1}$$

где δ_1 и δ_2 — соответственно углы увода шин передней и задней осей

 $L_{
m T}$ — база тягача; K — коэффициент смещения центра вращения тягача;

$$K = \frac{\operatorname{tg} (\gamma - \delta_1)}{\operatorname{tg} \delta_2 + \operatorname{tg} (\gamma - \delta_1)} . \tag{2}$$

При движении на поворотах с малыми радиусами кривизны $R \leqslant 30^{\circ}$ м скорость лесовозного автопоезда невелика и составляет 15-20 км/ч. При данном режиме движения боковые углы увода шин составляют 3-5°, а коэффициент смещения K=0.85-0.95 [1]. Для определения траекторий характерных точек тягача необходимо

получить выражения для нахождения траектории произвольной точки C с координатами x_i' и y_i' относительно середины передней оси.

Определим тангенциальную скорость v, произвольной точки Cтягача:

$$v_{\tau l} = \omega R = \frac{v_2 \cos \delta_2}{K L_{\rm T}} \operatorname{tg} \left(\gamma - \delta_1 \right) \frac{L_{\rm T} - y_l'}{\cos \psi} \,, \tag{3}$$

где R — расстояние от середины задней оси тягача до точки C; ψ — координатный угол;

$$\psi = \operatorname{arctg} \frac{x_i'}{KL_{\mathsf{T}} - y_i'}.$$

Тогда выражение для определения v_i будет иметь вид

$$v_i = \frac{v_2 \cos \delta_2}{K L_\tau \sin \gamma_i} (L_\tau - y_i') \operatorname{tg} (\gamma - \delta_1). \tag{4}$$

Как известно, закон движения произвольной точки по криволинейной траектории описывается следующими дифференциальными уравне-:имкип

$$\frac{dx_i}{dt} = v_i \cos \alpha_i,
\frac{dy_i}{dt} = v_i \sin \alpha_i,$$
(5)

где x_i и y_i — координаты точки относительно центральных осей в декартовой системе координат;

а_i — курсовой угол тягача.

Если расположить центральную систему координат так, чтобы ось 🆞 совпадала с направлением прямолинейного движения тягача, а начало координат находилось в точке перехода на криволинейную траекторию поворота, то, воспользовавшись дифференциальными уравнениями (5), можно получить выражения для определения координат произвольной точки тягача при движении на повороте:

$$x_{i} = x_{0} + \int_{t_{1}}^{t_{2}} \frac{v_{2} \cos \delta_{2}}{KL_{T} \sin \gamma_{i}} (KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1}) \times$$

$$\times \sin \left(\gamma_{0} + \frac{\cos \psi}{KL_{T}} \int_{t_{1}}^{t_{2}} v_{2} \cos \delta_{2} \operatorname{tg} (\gamma - \delta_{1}) dt + \right)$$

$$+ \operatorname{arctg} \frac{(KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1})}{KL_{T} - (KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1}) \operatorname{tg} \psi} dt;$$

$$y_{i} = y_{0} + \int_{t_{1}}^{t_{2}} \frac{v_{2} \cos \delta_{2}}{KL_{T} \sin \gamma_{i}} (KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1}) \times$$

$$\times \cos \left(\gamma_{0} + \frac{\cos \psi}{KL_{T}} \int_{t_{1}}^{t_{2}} v_{2} \cos \delta_{2} \operatorname{tg} (\gamma - \delta_{1}) dt + \right)$$

$$+ \operatorname{arctg} \frac{(KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1})}{KL_{T} - (KL_{T} - y'_{i}) \operatorname{tg} (\gamma - \delta_{1}) \operatorname{tg} \psi} dt,$$

$$(6)$$

где t_1 и t_2 — время, соответственно, начала входа тягача в поворот и выхода из него;

 x_0 и y_0 — координаты определенной точки тягача относительно середины передней оси.

Таким образом, пользуясь уравнениями (6), можно определять траекторию движения произвольной точки тягача, двигающегося по криволинейной траектории. Геометрические параметры лесовозных тягачей и их характерных точек приведены в табл. 1.

Таблица 1

	маз-	509A	КрАЗ-255Л		
Координаты и параметры тягачей	y' _i	x'i	y'i	x_{l}^{\prime}	
Координаты точки сцепки, мм	-5300	0	7040	0	
Координаты крайней передней точки тягача, мм	810	-1300	1470	—1370	
Координаты крайней задней точки тягача, мм	—5660	1280	-7160	1360	
База тягача, мм Ширина, мм Длина, мм	3950 2600 6470		5300 2750 8645		
Наименьший радиус поворота, м	11		14		

Испытания маневровых свойств тягачей лесовозных автопоездов проводили на сухом асфальтобетонном покрытии при движении по петлеобразной траектории с поворотом на 270°. Скорость при этом поддерживали постоянной и равной 20 км/ч. Записывали траектории движения середин передней и задней осей тягача, а также крайней передней точки бампера, противоположной крайней задней точки накатной плиты тягача и точки сцепки. По полученным траекториям движения замеряли габаритную полосу движения. Результаты теоретических и экспериментальных исследований приведены в табл. 2.

Как видно из табл. 2, координаты задней оси тягача существенно отличаются от координат точки сцепки, что свидетельствует о необходимости учитывать смещение точки сцепки относительно середины зад-

Таблица 2

Показатели траектории движения	Значения показателей при скорости движения автопоезда, с							
	0	2	4	6	8	10	11,2	
	МАЗ	-509A						
Координаты задней оси тяга- ча, м:	-							
$y_i \\ x_i$	-3,95 0	7,60 2,30	12,8 11,3	9,0 20,3	-1,0 19,8	5,90 10,5	-5,56 3,75	
Координаты точки сцепки, м: У і	-5,30	6,40	12,4	9,40	0,35	-5,65		
х _і ГПД, м теоретическая экспериментальная	2,60 2,60	2,12 3,11 2,89	3,23 3,18	3,23 3,26	19,5 3,23 3,32	3,11 3,25	4,85 2,60 2,76	
Ошибка, %	0	7,0	1,5	0,9	2,7	4,3	5,8	
	КрАЗ	-255Л						
Координаты задней оси тягача, м:								
$y_i \\ x_i$	_5,30 0	6,45 1,92	12,1 9,84	9,85 18,8	0,52 18,9	-4,80	-5,45 $4,24$	
Қоординаты точки сцепки, м: $egin{array}{c} {\sf y}_i \\ {\sf x}_i \end{array}$		4,92 1,44	11,6 8,76	9,24 17,5	1,96 18,4	4,24 12,6	-5,40 6,04	
ГПД, м теоретическая экспериментальная	2,75 2,75	3,22 3,12	3,76 3,68	3,76 3,69	3,76 3,67	3,22 3,34	2,75 2,82	
Ошибка, %	0	3,1	2,1	1,8	2,4	3,6	2,5	

ней оси тягача при проектировании систем управления лесовозных автопоездов.

По данным аналитических расчетов и экспериментальной проверки построены графики зависимости ГПД при движении лесовозных тягачей из поворота (рис. 2).

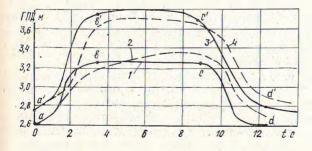


Рис. 2. Габаритная полоса движения лесовозных тягачей на повороте.

1, 2 — теоретическая и экспериментальная для лесовозных тягачей Минского автозавода; 3, 4 — то же для лесовозных тягачей Кременчугского автозавода,

Анализируя построенные графические зависимости, можно сделать вывод, что $\Gamma\PiД$ резко возрастает при входе тягача в поворот, т. е. (отрезки ab и a'b') в момент времени, когда водитель поворачивает руль. При положении руля в определенном стационарном состоянии, когда тягач повернул и движется по траектории окружности, $\Gamma\PiД$ не изменяется и соответствует максимальному значению (отрезки bc и b'c'). В момент выхода из поворота, когда водитель приводит руль в первоначальное положение, соответствующее прямолинейному движению тяга-

ча, ГПД уменьшается (отрезки cd и c'd') до значения, равного габарит-

ной ширине тягача.

Таким образом, полученные уравнения позволяют аналитическим методом исследовать маневровые свойства тягачей, т. е. определять траектории характерных точек, находить величину ГПД.

ЛИТЕРАТУРА

[1]. Разработка методики расчетного исследования оценочных параметров устойчивости и управляемости перспективного семейства трехосных автомобилей и автопоездов МАЗ: Отчет НИР/ МАДИ; Руководитель темы А. С. Литвинов. Инв. № 5822214. — Москва, 1979. [2]. Расчет ширины коридора вписывания автопоезда в поворот с применением ЭВМ/ Ю. Ю. Беленький, А. Б. Азбель, А. В. Жуков, В. П. Шишло. — Автомоб. пром-сть, 1976, № 12, с. 24—25. [3]. Чудаков Е. А. Теория автомобиля. Избр. тр. Т. 1. — М.: АН СССР, 1961.

Поступила 28 марта 1983 г.

УДК 629.114.3

О СХОДИМОСТИ РЕЗУЛЬТАТОВ ТЕОРЕТИЧЕСКИХ И ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ИЗГИБНЫХ КОЛЕБАНИЙ ХЛЫСТОВ

Н. И. БИБЛЮК, Б. Т. ПЕРЕТЯТКО Львовский лесотехнический институт П/О «Львовсельхозхиммаш»

Основными характеристиками, оказывающими влияние на параметры колебаний хлыстов, являются момент инерции поперечного сечения, плотность и модуль упругости древесины и закон их изменения по длине хлыста.

До сих пор при теоретических исследованиях колебаний хлыстов (пакетов) плотность и модуль упругости древесины принимали постоянными по длине хлыста. В качестве модулей упругости использовали, как правило, значения, полученные при испытаниях образцов малых размеров.

Экспериментальные данные о плотности и модуле упругости древесины реальных хлыстов по длине ствола [3, 5, 7] позволяют оценить степень влияния их величины и законов изменения на точность результатов теоретических исследований свободных изгибных колебаний хлы-

стов, что и является конечной целью данного исследования.

Для численного определения параметров свободных колебаний хлыстов использован метод начальных параметров [6]. Применительно к решению задачи на собственные колебания хлыстов, как простой двухопорной балки переменной погонной массы и жесткости, особенность этого метода заключается в следующем. Хлыст представляется в виде ступенчатой балки, погонная масса и жесткость которой изменяются от участка к участку, оставаясь постоянными в пределах одного участка. Допуская, что изгибные деформации хлыста достаточно точно описываются линейным уравнением вида

$$E(x)I(x)\frac{d^{4}v(x)}{dx^{4}}=q(x), \qquad (1)$$

и учитывая граничные условия, а также условия закрепления хлыста, можно записать [6]: