$(R_2O+RO)/(Al_2O_3+B_2O_3+Fe_2O_3)$. При избытке (R_2O+RO) (оксиды доноры кислорода) кристаллизуется пироксеновая фаза. При недостатке (R_2O+RO) преобладающая часть ионов железа находится в шестикоординированном состоянии и образует железокислородные области, что и определяет интенсивное выделение при обжиге несиликатной фазы — гематита.

Таким образом, на основании проведенных исследований можно сделать вывод о том, что амфиболовые концентраты и "хвосты" магнитной сепарации железных руд Околовского месторождения обладают благоприятным комплексом технологических свойств. Они могут применяться для производства стеновых керамических материалов в количестве 10-20 %, в составе масс для плиток внутренней облицовки стен при содержании 8 %, а также в качестве флюсующего компонента в майоликовых и плотноспекшихся керамических массах низкотемпературного обжига в количестве 5-20 %. Их можно использовать для получение глазурных фритт, петроситаллов и каменного литья в количестве соответственно 55-70 % и 85-100 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hannicke H. Natursteinmehle Entstehung und Verwendung moglichkeiten im Bereich der Keramischen Industrie / H. Hannicke, E. Wachhol // Sprechsaal Inter. Ceram. Class Magasine. 1987. B.120, № 2. S.113-115.
- 2. Ильина В.П. Керамические плитки на основе кварцполе- вошпатовых пород горно-промышленных предприятий Карелии / В.П. Ильина, В.В. Синцова // Стекло и керамика. 1994. № 1. С.16-18.
- Химический состав породообразующих минералов кристаллического фундамента Беларуси / А.А. Архипова и др. Мн.: ИГН НАН Б, 1997. 168 с.
- Бобкова Н.М. Получение износостойких петроситаллов на основе диабазов Республики Беларусь / Н.М. Бобкова, С.Е. Баранцева, А.И. Галабурда // Весці НАН Б. Сер. хім. навук. 2002. № 1. С. 92-95.
- Радченко Ю.С. Синтез цветных глазурных покрытий на основе метадиабазов / Ю.С. Радченко, И.А. Левицкий // Стекло и керамика. 2000. № 12. С. 20-23.

УДК 678.5.067.002.8

В.Т. Липик, В.Н. Марцуль, Ю.М. Сапего*, Ю.В. Полянская

Учреждение образования "Белорусский государственный технологический университет", *Отдел организации аналитического контроля Министерства природных ресурсов и охраны окружающей среды Республики Беларусь

ЭМИССИЯ УГЛЕВОДОРОДОВ ПРИ ОКИСЛИТЕЛЬНОЙ ТЕРМОДЕСТРУКЦИИ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

Представлены результаты исследований продуктов термодеструкции полиэтилентерефталата на предмет содержания ароматических и полициклических ароматических веществ, способных послужить основой для образования диоксинов. Исследован состав газовой и твёрдой фазы при термодеструкции ПЭТФ, а также отдельно состав веществ, конденсирующихся из газовой фазы. В результате работы установлено, что в газовой фазе при горении ПЭТФ содержатся бифенилы, флуорен, флуоренон, терфенилы, а также другие поли циклические ароматические вещества, которые при окислении, хлорировании и других реакциях могут образовывать диоксины.

Полиэтилентерефталат (ПЭТФ) незаменим в производстве пластиковой тары, химических волокон, плёнок. Большинство изделий из ПЭТФ находятся в эксплуатации непродолжительное время, после чего попадают в отходы. Проблема вторичной переработки ПЭТФ становится актуальной, поскольку объём упаковочного материа-

ла, преимущественного одноразового использования, постоянно увеличивается. В промышленно развитых странах количество отходов пластмасс растет с увеличением производства полимеров и достигает 14-15 кг/год на человека. В Беларуси доля полимерных материалов в отходах составляет около 10 %. [1]. В Швейцарии же, например, 20% бытовых отходов - это полимеры [2], Среди всего количества отходов пластмасс, находящихся в бытовых отходах, на долю ПЭТФ приходится 3,6 %.

По данным ассоциации европейских переработчиков ПЭТФ бутылок с 1995 по 2000 год количество переработанного вторичного ПЭТФ сырья выросло с 80 до 340 тыс. т в год [3]. Разработано несколько видов рециклинга отходов ПЭТФ. Химический рециклинг заключается в получении метилтерефталата или терефталевой кислоты и этиленгликоля, которые возвращаются в исходное производство. ПЭТФ подвергается энергетическому рециклингу путём сжигания. Физический рециклинг включает в себя отделение ПЭТФ от других отходов, промывку, сушку, измельчение и использование в качестве добавки к первичному полимеру, или как исходное сырьё для изготовления неответственных изделий. Но "остаточный ресурс" вторичного ПЭТФ, во многом зависит от содержания в нем загрязнений и может составлять лишь 25-60 % от первичного [4]. Сложности при переработке ПЭТФ представляют также сбор отходов, сепарация по цветам, транспортировка, поскольку они имеют малый удельный вес, отмывка от клеев и снятие этикеток. Поэтому в данное время, несмотря на высокую стоимость вторичного ПЭТФ, значительная его часть вывозится на полигоны, складируется в неустановленных местах и сжигается. Некоторая деструкция ПЭТФ имеет место при переработке и получении из него изделий путём экструзии, литья под давлением.

Процессы термодеструкции, горения и сжигания отходов являются основным источником поступления полихлорированных дибензодиоксинов и дибензофуранов $(\Pi X Д Д$ и $\Pi X Д \Phi)$ в окружающую среду [5], особенно в условиях, когда не до конца идет окисление углеводородов. Согласно данным [6] при сжигании отходов порядка 70% ПХДД и ПХДФ образуется по причине горения поливинилхлорида (ПВХ), поскольку он содержит до 55 % мас. хлора. При термодеструкции ПВХ в процессе циклизации полимерной цепи образуются ароматические соединения, которые впоследствии участвуют в реакциях, приводящих к образованию диоксинов. Макромолекула ПЭТФ уже содержит ароматические кольца, поэтому можно предположить, что при термодеструкции ПЭТФ будет образовываться широкой спектр ароматических и полициклических ароматических соединений. Авторы в работе [7] приводят сведения, что при горении ПЭТФ в окружающую среду выделяется больше ПХДД и ПХДФ, чем при горении полистирола или полиэтилена. Возможность образования сложных полициклических соединений в процессе термодеструкции ПЭТФ очевидна, поскольку макромолекула данного полимера содержит ароматическую составляющую. Молекула фталата содержит два заместителя, при отрыве или окислении которых может присоединяться кислород или гидроксильная группа, и создаётся хорошая предпосылка для образования диоксинов или предшествующих им соединений. В молекуле фталата присутствуют также атомы кислорода, способные участвовать во внутримолекулярных окислительных процессах с образованием фенолов и др соединений, которые путём конденсации, соединения могут образовывать кислородсодержащие полициклические ароматические вещества. Хлор, необходимый для образования полихлорированных соединений может присутствовать в ПЭТФ бутылках как остаток минеральных солей в минеральных водах или содержаться в прокладке из ПВХ в пробках бутылок. Поэтому представляет интерес исследование процесса термодеструкции ПЭТФ в плане образования полициклических ароматических соединений и оценка воздействия процессов термической переработки отходов ПЭТФ на окружающую среду и на воздух рабочей зоны.

Исследование процессов горения и пиролиза образцов ПЭТФ проводили на экспериментальной установке с температурным диапазоном от 100 до 1200 °C. Расход воздуха, подаваемого компрессором, контролировался с о помощью пузырькового расходомера. Контроль температуры в зоне горения проводили с помощью хромель-аллюмелевой термопары. На выходе печи продукты деструкции ПЭТФ улавливались поглотительным устройством.

Процесс термодеструкции ПЭТФ исследовали также с помощью пиролитической ячейки БП-03, встроенной в газовый тракт хроматографа "Цвет-800". Для разделения ароматических продуктов термодеструкции использовали капиллярную колонку, длиной 60 м, с носителем SE-71, диаметром 0,32 мм. В качестве газа носителя использовался азот, расход которого составлял 30 мл/мин. Расход воздуха — 400 мл/мин, водорода — 30 мл/мин, температура пламенно-ионизационного детектора — 250 °C, инжектора — 240 °C, температура колонок термостата изменялась от 50 до 200 °C со скоростью 5 °С/мин. Исследование качественного состава газовых выбросов при горения ПЭТФ было проведено на хроматомасс-спектрометре НР 6890 SERIES GC System фирмы HEWLETT PACKARD на капиллярной колонке, длиной 25 м, диаметром 0,25 мм, со стационарной фазой HP-5MS (Crosslinked 5% PH ME Siloxan). Температура термостата колонки изменялась в процессе анализа от 40 до 300 °C со скоростью 5 °С/мин. В качестве газа носителя использовался гелий с расходом 1 л/мин. Температура инжектора — 320 °C. Количество вводимой пробы — 2 мкл.

Механизм термодеструкции полиэфирных волокон с помощью пиролитической газовой хроматографии был исследован Б.В. Званским и др. Установлено, что риспад макромолекул происходит преимущественно по гомолитическому разрыву сложноэфирных связей с образованием ацетальдегида, бензола, оксида и диоксида углерода. На долю ацетальдегида в газовой фазе приходится наибольшая массовая часть продуктов термодеструкции — около 80% [8]. С повышением температуры пронсходит разрыв углерод-углеродных связей с образованием этилена и ароматического радикала, из которого впоследствии образуется бензальдегид [9]. Кроме бензальдегида в продуктах термодеструкции фиксируется в небольших количествах формильдегид [10].

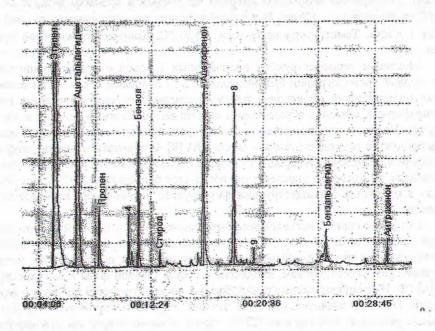

Объектом нашего исследования была газовая фаза и твёрдый остаток при пиролизе ПЭТФ. Состав газовой фазы достаточно изучен и простейшие составляющие ой углеводороды известны. Однако малое внимание при исследованиях уделялось проматическим углеводородам, входящим в состав газовой фазы при термодеструкции ПЭТФ. Имеющиеся данные разнообразны, поскольку состав продуктов термодеструкции ПЭТФ в значительной мере зависит от условий проведения процесса. В реальных условиях, при горении ПЭТФ, процесс термодеструкции усложияется репкциями гидролиза [11]. К тому же при слоевом горении отходов наряду с окислигельными реакциями горения протекают реакции пиролиза, в связи с неравномерноетью распределения и недостатком кислорода. При сжигании в печах отходов, содержащих ПЭТФ, термодеструкция характеризуется сложным распределением температур, составом газовой среды по объему отходов, что затрудняет прогнозирование состава выбросов. При проведении эксперимента газовая фаза охлаждалась, с выдепешием конденсирующейся жидкой составляющей. В составе газовой фазы продукгов горения и пиролиза ПЭТФ обнаружены: СО, СО2, метан, этилен, ацетальдегид, бензол, ксилол, стирол, ацетофенон, хинолин, фталевый ангидрид, фталевая кислота и др вещества. Состав продуктов термодеструкции (табл. 1) изменялся в зависимости от времени и температуры термообработки.

Таблица 1

Состав газовой базы горения ПЭТА (мкг/г)

Вещество	Температура, °С		
	550	750	950
Этилен	2459,0	4501,6	8815,8
Ацетальдегид	5694,6	4573,7	4518,6
Этан	12,6	17,2	191,7
Пропилен	44,5	50,1	112,2
Бензол	392,9	846,4	1744,6
Хинон	80,1	185,1	387,3
Стирол	168,3	316,3	572,1
Антрахинон	816,9	205,5	88,7
Бензальдегид	-0 n 10 00 = 1/12	pe- pago - 14/1 - 16/1	22,7
Дифенилэтилен	156,7	123,5	81,4
Ацетофенон		189,5	197,8
Фталевая кислота	76,5	135,2	387,3

Хроматограмма продуктов пиролиза $\Pi \Im \Phi$ после отделения конденсирующейся фазы представлена на рис.

Хроматограмма продуктов пиролиза ПЭТФ при 800 °C

При температурах порядка 400-500 °C значительную часть продуктов в термодеструкции ПЭТА составляет конденсирующаяся жидкая фаза, выход которой уменьшается с повышением температуры. Образующийся затвердевающий конденсат белого цвета имеет невысокую температуру плавления и по своей консистенции напоминает воск. Анализ полученной воскообразной массы, растворённой в трихлорметане, проводили при помощи хроматомасс-спектрометрии. Установлено, что она содержит большое количество ароматических и полициклических углеводородов – продуктов распада полимерной цепи и последующей их конденсации (табл. 2).

Таблица 2

Полициклические ароматические соединения воскообразного вещества, образующегося при термодеструкции ПЭТФ

Вещества	% масс
Ацетофенон	10,28
Фениловый эфир бензойной кислоты	19,28
Нафталин	2,55
Этанон-1,4-метилфенил	2,12
Бензойная кислота	17,48
4-метилфениловый эфир бензойной кислоты	9,19
2-оксофенилбутеновая кислота	0,94
4-метилбензойная кислота	3,17
Метиловый эфир фенилпропеновой кислоты	0,37
Бифенил	1,09
4-метилбифенил	0,32
Диметиловый эфир терефталевой кислоты	6,70
Флуорен	0,21
4-метил-2,6-дигидроксихинолин	2,68
4-этинил 1,1-бифенил	1,05
2-1-оксопропил бензойная кислота	7,06
Дифенилэтилен	0,51
Флуоренон	0,74
Фенантрен	0,38
Антрацен	0,37
1,1-бифенил-4-илэтанон	0,41
Фенилбензгидрозин	0,49
1,1-бифенил-3-карбоксильная кислота	0,49
Фенилнафталин	0,45
Пирен	0,56
Флуорен-9-фенил	0,41
Терфенил (изомеры)	3,25
Дибензоатэтандиол	0,18
2-гексиловый эфир фталевой кислоты	0,35
Бинафталин	2,02
Динафталинбензил	2,40
Не идентифицировано	2,50

Очевидно, что состав конденсирующейся фазы обусловлен реакциями конденсации и межмолекулярной сшивки, происходящими, скорее всего, хаотично, поскольку большинство обнаруженных соединений состоит из осколков мономера ПЭТФ, соединённых различными способами. Образующиеся при разрыве эфирных и углерод-углеродных связей радикальные частицы взаимодействуют между собой с образованием полициклических ароматических соединений, широкий спектр которых представлен в конденсирующейся фазе. Присутствие соединений, содержащих мстельную группу, говорит о том, что процессы термодеструкции происходят с разрывом углерод-углеродной связи в этиленовой составляющей макромолекулы политилентерефталата с образованием метильных радикалов.

Твёрдый зольный остаток, образующийся в небольших количествах, был исследован на содержание веществ, способных экстрагироваться из него. Как было установлено, при экстракции толуолом в аппарате Сокслета в течение часа потеря массы данного продукта составила 0,1 % мас., а в толуольном экстракте были обнаружены в незначительных количествах бензофенон и бензол.

В результате эксперимента установлено, что при термодеструкции ПЭТФ образуются ароматические и полициклические ароматические вещества, такие как бифенил, терфенилы, флуорен и др, которые, как известно [12] способны окислятся до дибензодиоксинов и дибензофуранов. Подтверждением тому могут служить исследования по изучению продуктов термодеструкции дибутилфталата, используемого как пластификатор для различных полимерных материалов. При температуре выше 500 °С термодеструкция дибутилфталата происходит с разрывом эфирной связи с дальнейшим отщеплением диоксида и монооксида углерода и образованием фенильного и бензинового радикалов. Этим можно объяснить наличие в продуктах термодеструкции фталатов таких соединений как бифенил, бифенилен, трифенилен, трифенильметан, о-терфенил. В присутствии молекул кислорода воздуха, или атомов кислорода, изначально содержащихся во фталате, из фенильных радикалов могут образовываться дибензофураны, также обнаруженные в продуктах термодеструкции дибутилфталата [13].

Таким образом, процесс термодеструкции ПЭТФ, протекающий при горении, сжигании отходов, протекает с выделением значительного количества полициклических ароматических углеводородов: бифенилов, терфенилов, флуорена, пирена, оказывающих значительное воздействие на окружающую среду. Термодеструкция ПЭТФ в значительной мере зависит от времени температурной обработки, температуры, наличия в отходах и в газовой фазе воды и ряда других факторов. Поэтому изучение влияния данных факторов на термодеструкцию ПЭТФ требует изучения с целью разработки методов утилизации отходов и уменьшения воздействия на окружающую среду.

СПИСОК ЛИТЕРАТУРЫ

- Республиканская программа обращения с отходами: №1368: Утв. Постановлением Совета Министров Республики Беларусь 01.09.1998/ Министерство охраны окружающей среды и природных ресурсов.-Минск., 1998. 82 с.
- 2. Демина Л.А. Полимер всем отходам пример // Энергия. 2001. №6, С. 44-48. 3.
- 3. Вторичные пластики: переработка отходов ПЭТФ бутылок // Пластические массы. №9, 2001. С. 3-7.
- Прокопчук Н.Р. Прогрессивные технологии рециклинга ПЭТ- упаковки в качественные изделия / Н.Р. Прокопчук, Л.И. Хоружик // Междунар. науч.-техн. конф. "Новейшие достижения в области импортзамещения в химической промышленности и производстве строительных материалов: Сб. тр.. Минск, УО БГТУ. 26-28 ноября 2003 г. Минск, 2003. С.234-237.
- Lars Ryden, Pawel Migula, Magnus Andersson Environmental Science.- Uppsala.: Printed by: Almqvist and Wiksell Trycheri, Baltic University Press, 2003. P.824.
- 6. Юфит С. Близок ли конец света ПВХ // Энергия: экономика, технология, экология. 1997. №5. С.20-21.
- Yasuhara A. Role of inorganic chlorides in formation of PCDDs, PCDFs, and coplanar PCBs from combustion of plastics, newspaper, and pulp in an incinerator / A. Yasuhara, T. Katami, T. Okuda, T. Shibamoto // Environmental Science and Technology. 2002. V.36. Issue 18. P.3924-3927.
- Коварская Б.М. Термическая стабильность гетероцепных полимеров / Б.М. Коварская, А.Б. Блюменфельд, И.И. Левантовская. М.: Химия, 1977. 263 с.
- Званский Б.В. Механизм термического разложения полиэфирного волокна в пиролизёре печного типа / Б.В. Званский, С.Ю. Карасев, А.О. Корень // Химические волокна. 1997. №6. С. 21-24.
- Кирш И.А К проблеме вторичной переработки полимеров / И.А. Кирш, В.В. Ананьев, Г.И. Аксёнова, С.Г. Трубина // Пластические массы. 2003. №5. С.9-13.
- 11. Алкснис А.Ф. Химическая стойкость полиэфиров / А.Ф.Алкснис, Г.Е. Замков, В.П. Карливан. Рига: Зинатне, 1978, 222 с.
- 12. Майстренко В.Н. Эколого-аналитический мониторинг супертоксикантов / В.Н. Майстренко, Р.З. Хамитов, Г.К. Будников. М.: Химия, 1996. 319 с.
- 13. Липик В.Т. Влияние фталатов на процесс образования диоксинов при термодеструкции ПВХ / Липик В.Т., ВН. Марцуль, М.Ж.М. Абади // Весц1 НАН РБ. Сер. хім. навук. 2003. №1. С. 155-159.