ягод, грибов и лекарственного и технического сырья, охота, сенокошение, пастьба скота, заготовка древесно-веточного корма, реакклиматизация животных, химическая, биологическая и гидротехническая мелиорация, химическая и биологическая борьба с вредителями и болезнями леса. Каждое из этих мероприятий следует считать фактором воздействия на охраняемый объект.

Любые лесохозяйственные мероприятия, особенно рубки, изменяют сложившиеся причинно-следственные связи в биогеоценозах, нарушают равновесие в сложной биологической саморегулирующейся системе. Под влиянием рубок происходит резкое, порой необратимое нарушение практически всех интегрирующих сообщество экологических и ценотических связей.

Критерии оценки влияния лесохозяйственных мероприятий на целевые функции заказников должны удовлетворять следующим требованиям:

- объективность: определенные или рассчитанные специалистами критерии должны давать правдивую информацию о состоянии объекта охраны;
- информативность: необходимо получать достаточно широкий спектр информации о состоянии охраняемого объекта, позволяющий судить о том, достигается или не достигается цель организации заказника;
- доступность: возможно, более простая технология определения показателей, понятная как специалисту лесного хозяйства, так и специалисту контролирующей организации;
- сравнимость: полученный разными исполнителями критерий должен отражать реальное состояние объекта охраны и в первом, и во втором случаях.

Влияние лесохозяйственных мероприятий может оцениваться по нескольким критериям: имеющим обобщенное для всего заказника значение, имеющим значение для конкретной популяции (животных или растений), отражающим состояние какой-либо функции.

В соответствии с положениями о заказниках лесохозяйственные мероприятия могут быть допустимы без ограничений, с ограничениями и недопустимы.

Проведя анализ последствий, к которым приводят те или иные лесохозяйственные мероприятий, мы предлагаем для каждой целевой функции перечень критериев оценки воздействия на них лесохозяйственных мероприятий (таблица).

Таким образом, путем определения количественных и качественных параметров критериев для конкретной ООПТ можно выяснить, достигаются ли цели создания заказников, выполняются ли их целевые функции.

УДК 630*43

И. Э. Рихтер, доцент; Е. Г. Акунович, аспирант

ВЛИЯНИЕ НИЗОВЫХ ПОЖАРОВ НА НАПОЧВЕННЫЙ ПОКРОВ В СОСНЯКАХ МШИСТЫХ

The local fires influence on the soil cover in the pine mossy forests.

Лесной пожар, как специфический экологический фактор, оказывает существенное влияние на все компоненты биогеоценозов, но в первую очередь на напочвенный покров, который служит проводником горения при всех видах пожаров. От его пирологической характеристики зависят параметры кромки пожара, вид и интенсивность, так-

тика и техника тушения пожаров, экономические, экологические и социальные последствия. В свою очередь, пирологическая характеристика лесных горючих материалов зависит от типа леса и характеристики насаждения.

Цель исследований — выявление продолжительности последействия низовых пожаров средней интенсивности на видовое разнообразие растений и послепожарное формирование напочвенного покрова в сосняках мшистых.

Для выяснения перечисленных вопросов были заложены четыре пробные площади, выполнен сплошной перечет деревьев, учет подроста и подлеска. Лесоводственнотаксационная характеристика насаждений на них приведена в табл. 1. Интенсивность пожара определялась по высоте нагара, прогоранию лесной подстилки и данным книги учета лесных пожаров.

Таблица 1 Лесоводственно-таксационная характеристика насаждений на пробных площадях

Проб		Гол	Coorer	Pos	Количе-	Сре	дние		10,40	Запас, 1	м ³ /га
ная пло- щадь	Вариант	Год по- жара	Состав древо- стоя	Воз- раст, лет	ство де- ревьев, шт/га	Н, м	Д, см	Бо- нитет	Пол- нота	сырора- стущий	сухос- той
1	Контроль	_	10С+Б	60	904	18,7	18,5	II	0,72	228	2
2	Пожар средней интенсивности	1966	10C	60	828	19,0	18,6	II	0,66	214	17
3	Контроль	_	10C	55	890	18,4	17,9	II	0,67	190	-
4	Пожар средней интенсивности	1966	10C	55	810	18,6	18,1	II	0,62	177	15

Встречаемость травянистых видов и учет надземной их фитомассы определяли в год после пожара и через 6 лет на 20 учетных площадках размером по 1 $\rm m^2$. Проективное покрытие почвы отдельными видами определяли визуально для каждой пробной площади в целом и на учетных площадках. Контроль массы лесной подстилки производили на пяти площадках по 0,1 $\rm m^2$ каждая. Фракционный состав подстилки по подгоризонтам определяли в смешанных образцах.

В течение 6 лет в древостоях произошли незначительные изменения. Количество усохших деревьев в насаждениях, поврежденных огнем, составило 8,4 и 9,0%, в неповрежденных – 0 и 0,9%. Снижение запаса древесины достигло 6,1 и 6,8%. Отмирали более мелкие деревья. Подрост сосны в возрасте до 5 лет (1,2 тыс. шт. на 1 га) встречался только на пробной площади 1.

Результаты изучения послепожарной динамики восстановления видового состава живого напочвенного покрова свидетельствуют, что однолетние растения и мхи во время пожаров погибают почти полностью. Многолетние растения (вейник наземный, иван-чай и клевер люпиновый) начали отрастать через 15—20 дней после пожара. В следующий после пожара сезон наблюдалось восстановление брусники, черники и других травянистых растений. Появились мхи политрихум можжевеловый и маршанция полиморфа. Через 6 лет после пожара неполностью восстановился моховой покров, исчезли из состава живого напочвенного покрова арника горная, седмичник европейский, козелец приземистый (табл. 2) и появились новые растения. Быстрее других восстанавливался покров из брусники. Отмечено увеличение встречаемости и покрытия почвы вейником наземным, иван-чаем и костяникой.

Характеристика живого напочвенного покрова

	Пробные площади											
	1			2			3			4		
Виды растений	По- кры- тие, %	Встре- чае- мость, %	Оби- лие, %	По- кры- тие, %	Встре- чае- мость, %	Оби- лие, %	По- кры- тие, %	Встре- чае- мость, %	Оби- лие, %	По- кры- тие, %	Встре- чае- мость, %	Оби- лие, %
Дикранум волнистый	6,2	35	4	0,8	10	1	5,0	40	4	1,8	10	2
Плевроциум Шребера	58,3	100	6	13,2	45	4	62,5	100	6	15,3	50	4
Птилиум гребенчатый	0,4	5	1	0,3	5	1	1,0	10	2	0,5	10	1
Политрихум можжевеловый	-	_	_	0,2	15	1	-	_	_	2,5	20	2
Гилоколиум блестящий	1,2	15	2	1,0	10	2	2,3	15	2	2,5	15	- 2
Плаун булавовидный	0,2	5	-1	0,2	5	1	1,0	10	2	1,5	15	2
Плаун сплюснутый	0,1	5	1	0,1	5	1	- 1	, ,		-	_	_
Ландыш майский	0,1	15	1	0,3	15	1	1,0	10	2	2,0	15	2
Иван-чай	0,3	20	1	1,8	35	3	0,5	15	1	3,5	20	2
Арника горная	0,1	5	1			-	_	-	_		_	
Вейник наземный	5,3	25	4	7,2	60	4	-	_	- -	1,3	15	2
Ожика волосистая	0,2	20	1	1,5	25	3	0,8	10	1	2,2	35	3
Майник двухлистный	0,7	20	- 1	1,5	25	3	1,0	15	1	-	-	_
Черника	17,5	60	5	11,2	55	5	12,5	40	4	8,0	50	4
Брусника	20,6	65	5	26,8	75	5	22,5	70	5	30,5	85	6
Костяника	0,9	10	1	1,5	15	2		_	_	0,5	5	1
Земляника	0,2	5	1	2,3	40	3		-	_	2,0	25	3
Седмичник европейский	0,1	15	1 -	-	_		1,5	20	2	0,3	10	1
Козелец приземистый	0,2	10	1 .	-	-	-	_ _ _ _	-	-		_	_
Зимолюбка зонтичная	0,1	10	1	0,1	15	11	1 -		***		-	A-
Зверобой продырявлен- ный	0,3	15	1	0,2	15	1	175		Ŀ	_	172H	
Орляк обыкновенный	0,1	10	1	0,3	15	1	15 X		_	100	-	M
Клевер люпиновый	0,1	20	1	0,3	20	n 1 :	-	-		0,2	10	. 1

Основную роль в формировании фитомассы живого напочвенного покрова в этом типе леса играет моховой ярус, в составе которого преобладает плевроциум Шребера. Фитомасса мохового покрова в абсолютно сухом состоянии на пробной площади 1 составила 2028 кг/га, травянистого покрова и кустарников — 306 кг/га, на пробной площади 2 соответственно 1245 и 324 кг/га, пробной площади 3 — 1873 и 278 кг/га, пробной площади 4 — 1321 и 295 кг/га. Через 6 лет после пожара фитомасса травяного покрова достигла допожарной, мохового составила 64,1 и 70,5% от контрольных.

Потери органической массы лесной подстилки более значительные, чем живого напочвенного покрова. По истечении 6 лет масса органического вещества на пробных площадях 2 и 4 ниже, чем на контрольных 1 и 3, на 22,2 и 24,9%. Данные о фракционном составе массы лесной подстилки (табл. 3) показывают, что на пробных площадях 1 и 3 преобладает масса подстилки в подгоризонте A_0^2 , а на 2 и $4 - A_0^3$.

Таблица 3

Франция	000000	T-0
Фракционный	COCTAB	подстилки

Проб-	Под-	Macca	Фракции лесной подстилки								
ная пло- щадь	гори- зонт	масса подстил- ки, кг/га	Хвоя, листья, кор	ра Сучья		Полу- разложившаяся масса	Хорошо разложившаяся масса				
1	A_0^{-1}	9178	7150	1900		128	_				
	A_0^2	16508	225	525		14760	998				
	A_0^3	11564	_	235		3252	8077				
	A_0	37250	7375	2660		18140	9075				
2	A_0^{1}	8712	6354	2022		336	_				
	A_0^2	9762	190	669		7608	1295				
	A_0^3	10512	_	95		2354	8063				
	\mathbf{A}_0	28986	6544	2786		10298	9358				
3	$\mathbf{A_0}^1$	7241	5120	1965		156					
	A_0^2	14883	290	608		12929	1056				
	A_0^3	10551	_	105		2735	7711				
	A_0	32675	5410	2678		15820	8767				
4	A_0^{1}	7093	4730	2065		298	_				
	A_0^2	7505	255	637		5228	1385				
	A_0^3	9950		195		1900	7855				
	A_0	24548	4985	2897	4.	7426	9240				

Уменьшение массы подстилки в подгоризонтах A_0^1 и A_0^2 произошло за счет сгорания ее, а в A_0^3 — сгорания, более быстрого пиролиза после нагревания и улучшения аэрации.

С потерей органического вещества и азота напочвенного покрова и лесной подстилки во время и после пожара связано изменение режима питания древесного яруса. Быстрый переход зольных элементов из подстилки в верхние горизонты почв с малым поглощающим комплексом приводит к перемещению их за пределы корненасыщенных горизонтов. К тому же повышение температуры в зоне горения способствовало отмиранию мелких корней, расположенных в подгоризонте подстилки A_0^3 и частично в горизонте A_1 , что, несомненно, оказывает отрицательное влияние на круговорот веществ в системе почва — растение — почва.

Полученные нами ранее данные о допожарном и послепожарном содержании азота и зольных элементов в подстилке сосняков мшистых позволили определить их массу через 6 лет после пожара (табл. 4).

Общий запас азота в подстилке на пробной площади 1 составил 411,8 кг/га, а через 6 лет после пожара на пробной площади 2 на 29,7%, или на 122,2 кг/га, меньше. Аналогичная ситуация и в 55-летнем насаждении. Зольные элементы при сгорании лесной подстилки переместились в горизонт A_1 . Потери органического вещества, азота и зольных элементов из напочвенного покрова и лесной подстилки отражаются на химизме почвы и обеспечении компонентов биогеоценозов азотом и зольными элементами. Еще Γ . Ф. Морозов отмечал, что лесная подстилка является кладовой, из которой древесные растения используют азот и зольные элементы для нормальной жизнедеятельности.

Таблица 4 Запас азота и зольных элементов в лесной подстилке, кг/га

Пробная	Подгоризонт,			Элементы			
площадь	горизонт	N	P	K	Ca	Mg	
1	A_0^{-1}	93,6	8,3	11,9	34,9	9,2	
	A_0^2	189,8	11,6	18,2	47,9	11,6	
	A_0^{3}	128,4	6,9	10,4	26,6	6,9	
	\mathbf{A}_0	411,8	26,8	40,5	109,4	27,7	
2	A_0^{-1}	93,2	7,8	13,1	30,5	9,6	
	$A_0^2 A_0^3$	98,6	5,9	8,8	27,4	5,9	
	A_0^{3}	97,8	6,3	6,3	17,9	6,3	
	$\mathbf{A_0}$	289,6	20,0	28,2	71,8	21,8	
3		73,9	6,5	9,4	27,5	7,2	
	$egin{array}{c} {\mathbf{A_0}}^1 \\ {\mathbf{A_0}}^2 \end{array}$	171,2	10,4	16,4	43,2	10,4	
	A_0^3	117,1	6,3	9,5	24,3	6,3	
	\mathbf{A}_0	362,2	23,2	35,3	95,0	23,9	
4		75,9	6,9	10,6	24,8	7,8	
	A_0^2	75,8	4,5	6,8	18,0	4,5	
	${A_0}^1 \ {A_0}^2 \ {A_0}^3$	92,5	6,0	6,0	16,9	6,0	
	A_0	244,2	17,4	23,4	59,7	18,3	

Полученные данные могут быть использованы при оценке экономических последствий лесных пожаров и определении продолжительности последействия низовых пожаров в сосновых насаждениях.

УДК 619:576.89:636-93

В. Ф. Литвинов, доцент

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ПАРАЗИТОЦЕНОЗОВ В ПРИРОДНЫХ ПОПУЛЯЦИЯХ МЛЕКОПИТАЮЩИХ И ПРИ КЛЕТОЧНОМ ПУШНОМ ЗВЕРОВОДСТВЕ

Peculiarities of forming parasitocenosies in natural popularities of mammals and in furry animals hutch-farming.

Общеизвестно, что действенные мероприятия по сохранности и умножению природных ресурсов способствуют увеличению численности диких животных. Так, законы об охране природы, принятые в стране, и все последующие законодательные постановления способствуют достижению цели «Всемирной стратегии по охране природы», разработанной по поручению Программы ООН по окружающей среде и сформулированной по следующим образом: «Как можно скорее и наиболее эффективно добиваться сохранения и рационального использования природных ресурсов, от которых зависят выживание и благополучие человечества». В хозяйственный оборот вовлекаются новые лесные массивы и другие территории. Все это увеличивает естественные предпосылки более частых контактов диких и домашних животных, а также диких животных и человека.

Еще академик К. И. Скрябин писал, что «нельзя оздоровить домашних животных и человека от болезней, если в естественных условиях существуют среди диких животных природные очаги этих заболеваний».