ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

РЕСПУБЛИКА БЕЛАРУСЬ

(19) **BY** (11) **3950**

(13) **C1**

 $(51)^7$ C 04B 12/02

ГОСУДАРСТВЕННЫЙ ПАТЕНТНЫЙ КОМИТЕТ РЕСПУБЛИКИ БЕЛАРУСЬ

(54) СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ФОСФАТНОГО СВЯЗУЮЩЕГО

(21) Номер заявки: а 19980604

(22) 1998.06.25

(46) 2001.06.30

- (71) Заявитель: Белорусский государственный технологический университет (ВУ)
- (72) Авторы: Кузьменков М.И., Шишканова Л.Г., Бычек И.В., Стародубенко Н.Г. (ВУ)
- (73) Патентообладатель: Белорусский государственный технологический университет (ВУ)

(57)

Сырьевая смесь для получения фосфатного связующего, содержащая ортофосфорную кислоту, формалин, отход кожевенного производства в виде хромсодержащей золы и воду, отличающаяся тем, что она дополнительно содержит глину, при следующем соотношении компонентов, мас. %:

ортофосфорная кислота	62-64
формалин	1,0-1,5
отход кожевенного производства	5-7
глина	5-15
вода	остальное.

(56)

Кузьменков М.И. и др. Ресурсосберегающие и экологически чистые технологии. Труды второй н.-т. конф. Часть II. - Гродно, 1997. - С. 117-122.

SU 1499854 A1, 1996. RU 94028236 A1, 1996.

Изобретение относится к производству фосфорсодержащих соединений, а именно к получению фосфатных связующих, используемых для изготовления термостойких и высокопрочных огнеупорных изделий.

Известно фосфатное связующее [1], включающее ортофосфорную кислоту и карбонитрид титана при следующем содержании компонентов, мас. %: ортофосфорная кислота 35-45; порошок твердого раствора оксидов цинка и магния 5-15, карбонитрид титана - остальное.

Недостатком данной композиции является низкая прочность на сжатие, равная 6,2-7,0 МПа, а также наличие в составе дорогостоящих дефицитных компонентов.

Известна сырьевая смесь для получения фосфатного связующего [2], включающая мас. %: гидроксид алюминия или магния 8-11, отходы гальванического производства 7-17, ортофосфорная кислота - остальное.

Недостатком композиции также является низкий предел прочности при сжатии, составляющий всего 20,7-29,4 МПа.

Наиболее близким к предлагаемой по технической сущности и достигаемому результату является сырьевая смесь для получения фосфатного связующего [3], содержащая, мас. %:

ортофосфорная кислота 70-75 формалин 1,5-2,5 хромсодержащая зола отход кожевенного производства 5-7 вода остальное.

Недостатком этой сырьевой смеси является невысокий предел прочности при сжатии материалов, полученных на основе данного связующего (89-98 МПа).

Задачей изобретения является повышение предела прочности при сжатии композитов на основе предлагаемой сырьевой смеси.

BY 3950 C1

Поставленная задача достигается тем, что сырьевая смесь для получения фосфатного связующего, содержащая ортофосфорную кислоту, формалин, отход кожевенного производства в виде хромсодержащей золы и воду, дополнительно содержит глину, при следующем соотношении компонентов, мас. %:

ортофосфорная кислота	62-64
формалин	1,0-1,5
отход кожевенного производства	5-7
глина	5-15
вола	остальное

Ортофосфорная кислота соответствует требованиям ГОСТа 10678-76, формалин - ГОСТу 1625-75, отход кожевенного производства представляет собой тонкодисперсный порошок темно-зеленого цвета химического состава, мас. %:

Cr(III)	4,6-9,1
Cr(VI)	2,3-2,9
CaO	49,1-51,6
MgO	2,0-3,9
Al_2O_3	2,4-6,8
SiO_2	3,7-4,8
Fe_2O_3	0,4-1,3
Cl	1,1-2,0
SO_3	2,4-4,8
CO_2	1,0-2,0
P_2O_5	0,1-0,7
Na_2O	0,01-0,03
K_2O	0,01-0,02
n.n.n.	остальное.

Отход кожевенного производства представляет собой золу, которая образуется при сжигании технологического ила при $600\,^{\circ}\mathrm{C}$.

Используется глина белорусского месторождения "Даниловцы" следующего химического состава, мас %:

$$SiO_2 - 58,1$$
; $Al_2O_3 - 9,57$; $Fe_2O_3 - 4,18$; $TiO_2 - 0,34$; $CaO - 9,15$; $MgO - 2,76$; $K_2O - 2,64$; $Na_2O - 1,67$; $SO_3 - 0,25$; $n.n.n. - 11,22$.

В настоящее время в связи с трудностями по сжиганию отхода кожевенного производства он вывозится на специально выделенный заводу захоронитель, который занимает огромную территорию и загрязняет окружающую среду. Введение глины в состав шлама в процессе сжигания отходов значительно уменьшает пыление продуктов сжигания и позволяет организовать процесс получения хромсодержащей золы с меньшим вредом для экологии.

Введение глины в качестве нейтрализующего агента в хромсодержащий отход в составе шлама для получения фосфатного связующего предлагается впервые с целью повышения предела прочности при сжатии композитов на основе полученного фосфатного связующего при улучшении экологии окружающей среды. За счет снижения пылеуноса на стадии сжигания технологического шлама.

Изобретение поясняется примером.

В колбу с мешалкой заливают фосфорную кислоту 64 г (ρ = 1,579 г/см³) и разбавляют ее водой до плотности 1,335 г/см³, затем медленно, небольшими порциями при постоянном охлаждении добавляют нейтрализующий компонент, состоящий из обожженных 5 г отходов кожевенного производства, содержащих 5 % глины. Температура реакционной смеси не должна превышать 40-45 °C. В результате реакции смесь приобретает красно-бурый цвет, что свидетельствует о наличии Cr(III).

Для восстановления Cr(VI) до Cr(III) в реакционную смесь вводится 1,0 г 30 %-ного раствора формалина. О полном восстановлении Cr(III) свидетельствует изменение окраски реакционной смеси от красно-бурого до насыщенного зеленого цвета.

После подачи формалина смесь разогревают до 100 °C и выдерживают при этой температуре не менее 1 ч.

Остальные примеры выполнены аналогично первому с варьированием ингредиентов в соответствии с табл. 1.

Таблица 1

Составы сырьевых смесей для получения фосфатного связующего

	Состав связующего, мас. %					
Компоненты связующего	Прототип 1	1	1 2	3	Запредельные значения	
		1			4	5
Ортофосфорная кислота	73	64,0	63,0	62,0	65,0	61,0
Формалин	2	1,0	1,3	1,5	0,6	1,9
Хромсодержащий отход кожевенного производ-						
ства (зола)	6	5	6	7	3	9
Глина	-	5	10	15	1	20
Вода	19	30,0	29,7	29,5	31,4	28,1
Плотность связующего, г/см ³	1,73	1,42	1,39	1,43	1,33	1,86

Образцы огнеупорных изделий готовят следующим образом. В емкость с мешалкой загружают огнеупорный заполнитель (корунд) в количестве 85 %, затем при постоянном перемешивании дозируют связующее в количестве 15 %, перемешивают 3-5 мин.

Формовку изделий осуществляют на пресс-автомате с удельным прессовым давлением 16 МПа. Габаритные размеры образцов $120 \times 250 \times 88$ мм.

Режим сушки и отверждения следующий:

скорость подъема температуры 100 °С/ч;

продолжительность обработки при максимальной температуре 450-500 °C - 1 час.

После термообработки готовые огнеупорные изделия испытывают на физико-механические показатели по ГОСТ 2409-80, 7875-83, 4071-80.

Исследованы пять составов связующего с варьированием ингредиентов в соответствии с табл. 1.

Из табл. 1 и 2 видно, что введение в состав связующего глины менее 5 % по массе приводит к незначительному уменьшению прочности и термостойкости композитов, повышение же количества глины более 20 % ведет к увеличению плотности связующего, что затрудняет равномерное распределение связующего по поверхности частиц заполнителя, а также ведет к резкому снижению прочности и термостойкости композитов.

Таблица 2 Физико-механические показатели композитов, изготовленных на основе синтезированного фосфатного связующего

	Прототип	Состав связующего					
Свойства композитов		1	2	3	Запредельные значения		
					4	5	
Предел прочности при сжатии, МПа	96,0	130,0	112,0	100,0	86,0	78,0	
Термостойкость, количество теплосмен,							
1000 °С - вода	50	52	50	51	40	31	
Водопоглощение, %	6,43	7,26	6,98	6,64	8,21	7,84	
Пористость, %	16,41	18,15	17,21	17,03	19,37	18,89	
Объемная масса, г/см ³	2,73	2,93	2,87	2,81	2,69	2,74	

Это препятствует образованию однородной структуры композитов и ведет к ухудшению физикомеханических характеристик материала.

Оптимальное количество глины, введенной в состав нейтрализующего компонента лежит в пределах 5-15 %, плотность полученного связующего 1,39-1,43 г/см³.

Из табл. 2 видно, что композиционные материалы, изготовленные на основе предлагаемой сырьевой смеси для фосфатного связующего, имеют предел прочности в 1,3 раза выше, чем у прототипа, отличаются пониженным расходом ортофосфорной кислоты.

Источники информации:

- 1. A.c. CCCP 1321711, MIIK C 04B 12/02, 1987.
- 2. A.c. CCCP 1535859, MIIK C 04B 12/02, 1990.
- 3. Кузьменков М.И., Плышевский С.В.. Получение фосфатной связки из хромсодержащих отходов кожевенного производства // Ресурсосберегающие и экологически чистые технологии. Труды второй н.-т. конф. Часть II. Гродно, 1997. С.117-122.