Табл. Средний выход категорий крупности деловой древесины в зависимости от размера ступени в % от данных для центра ступени

Центр	Деловая древесина							
ступени	Крупная		Средняя		Мелкая		Итого деловой	
толщи-	Ступень	Ступень	, ,	Ступень		Ступень	Ступень	Ступень
ны, см	2 см	4 см	2 см	4 см	2 см	4 см	2 см	4 cm
12	-	-	-	-	100	101	100	101
16	-		105	116	98	94	100	101
20		-	100	100	101	104	100	101
24	-	-	100	100	100	101	100	101
28	104	115	99	97	100	100	100	101
32	100	100	100	101	100	100	100	100
36	100	100	100	101	100	100	100	100

Использование 2-сантиметровых ступеней толщины будет вести к более точному определению выхода категорий крупности деловой древесины (особенно при диаметре древостоя до 32 см, а также при различных выборочных методах таксации, где численность учитываемых стволов бывает незначительной) и более точной ее таксовой оценке. Для этого необходимо иметь сортиментные таблицы с шагом 2 см по диаметру.

Применение математических моделей образующих древесных стволов позволяет производить оценку выхода деловой древесины стволов не только по 2-сантиметровым ступеням толщины, но и исходя из конкретного диаметра и высоты ствола, что будет вести к еще более точному учету сортиментной структуры древостоев.

УДК 630*433.3

А.В.Качаева, м.н.с.

OCOБЕННОСТИ ВЫДЕЛЕНИЯ THYROSTROMA COMPACTUM SACC. В ЧИСТУЮ КУЛЬТУРУ

In article data on features of allocation of pure of Thyrostroma compactum Sacc. are given

Тиростромоз - опасное некрозно-раковое заболевание липы (возбудитель - дейтеромицет Thyrostroma compactum Sacc.), в результате которого сначала происходит отмирание верхушечных тонких ветвей, а затем и всей кроны дерева. С середины 80-х годов оно получило широкое распространение во многих регионах европейской части России, где достигло размеров эпифитотии и распространяется дальше. Наибольший вред наносит данное заболевание городским насаждениям. Так, в Москве ин-

фекционным усыханием поражено 87% деревьев, и стоит вопрос о целесообразности сохранения тротуарных посадок [1].

В Беларуси тиростромоз ранее не диагностировали, однако проведенное нами фитопатологическое обследование выявило слабую степень поражения этой болезнью у 82% липовых насаждений города Минска [3].

В связи с вышесказанным возникает необходимость детального изучения возбудителя болезни. При изучении микологических характеристик возбудителя болезни особую трудность вызывает получение чистой культуры. Из литературных источников известно, что спороношение гриба в чистой культуре получается в единичных случаях [2].

Исследования, выполненные на кафедре защиты леса и садовопаркового строительства по методике выделения возбудителя тиростромоза и подбору питательных сред, оказались успешными. Была получена чистая культура гриба, а через 7 суток зафиксировано его обильное спороношение в искусственной питательной среде. Для этого веточки, инфицированные тиростромой, помещались в стерильную влажную камеру после обработки в дистиллированной воде. Тем самым мы инициировали обильный рост посторонних несовершенных грибов, находящихся на поверхности и препятствующих выделению чистой культуры. Затем проводилось обеззараживание веточек спиртом, и они снова помещались в стерильную влажную камеру. Через 3 суток начинался активный рост мицелия изучаемого патогена. В условиях бокса он стерильно переносился в чашки Петри с сусло-агаром. В среду для подавления посторонней грибной флоры добавлялся антибиотик ампициллин. Как оказалось, он явился стимулятором спороношения, которое наступало 7-8 суток спустя.

При культивировании гриба, выделенного из липы, на сусло-агаре сахаристостью 6-7% в интервале температур 18-22°С лагфаза продолжается около 2-х суток. Затем вокруг инокулюма образуется мицелий мраморно-розового цвета, край колонии ясно очерченный, ровный, прижатый, окрашивания питательной среды не наблюдается. По мере роста мицелия центральная часть колонии приобретает буровато-желтый цвет, на 7-8 сутки образуется спороношение.

Полученные результаты дают возможность более детально изучить биологию и экологию и разработать меры борьбы с грибом Thyrostroma compactum Sacc., который вызывает массовое усыхание липы.

ЛИТЕРАТУРА

1. Мухина Л.Н., Плотникова Ю.М. Состояние зеленых насаждений в Москве в 1993-1995 гг. // Известия жилищно-коммунальной академии. Городское хозяйство и экология.- Вып. 2.- 1996.- С. 23-24.

- 2. Повилонис Р.П. Биологические особенности Thyrostroma compactum Sacc. и применение их для ограничения поражаемости липы в Литовской ССР: Дис. ... канд. биол. наук. Вильнюс, 1981.
- 3. Федоров Н.И., Качаева А.В. Грибные болезни липы в лесных и зеленых насаждениях Беларуси.

УДК 630*114

И. В. Соколовский, доцент; А. Г. Ермолович, студент

ПОЧВЫ СОСНЯКОВ ЧЕРНИЧНЫХ И ЗАКОНОМЕРНОСТИ В ФОРМИРОВАНИИ ИХ ПРИЗНАКОВ И СВОЙСТВ

The regularity of soil's formation in Pinetum myrtillosum of Belarus are examined.

Сосновые насаждения в условиях Беларуси получили наибольшее распространение. Благодаря своей экологической пластичности, сосна произрастает на самых разнообразных по плодородию почвах. В типологической структуре сосняков значительные площади занимают черничные типы. В отдельных лесхозах они занимают до 30% от всей площади сосновой формации и формируются на пониженных участках территории, склонах, окраинах переходных и верховых болот.

Определение типа леса проводилось на основе следующих показателей: породный состав, продуктивность, микрорельеф, живой напочвенный покров, почвенно-грунтовые условия (уровень грунтовых вод, оглеение, мехсостав). Произрастают сосняки черничные по I и II классам бонитета, что определяется в основном мехсоставом почвообразующей породы, режимом колебания уровня грунтовых вод, строением почвенного профиля. На колебание уровня грунтовых вод большое влияние оказывает наличие в почвенном профиле водоупорных горизонтов. Водный режим почв сосняков черничных обеспечивается слабоминерализованными водами.

Типичные сосняки черничные в условиях Беларуси формируются на дерново-подзолистых глееватых песчаных и супесчаных почвах. На дерново- подзолистых временно избыточно увлажняемых песчаных и супесчаных почвах формируются также черничные типы леса, в частности мшисто-черничная ассоциация.

Обширные исследования условий местопроизрастания сосняков черничных позволили выявить основные закономерности в формировании почвенного профиля и свойств почв, на которых они произрастают. В таблице приведена закономерность выделения генетических горизонтов в дерново-подзолистых временно избыточно увлажняемых (слабоглееватых)