УДК 547.772.2'422:541.124

А. М. Звонок, Н. М. Кузьменок, Л. С. Станишевский

СИНТЕЗ β-ГИДРОКСИАЛКИЛПИРАЗОЛОВ РЕАКЦИЕЙ β-АРИЛАКРИЛОИЛОКСИРАНОВ С ГИДРАЗИНОМ

Взаимодействие β -арилакрилоилоксиранов с гидразингидратом протекает через образование промежуточных α,β -эпоксиалкилпиразолинов, которые в условиях реакции претерпевают внутримолекулярное окислительно-восстановительное диспропорционирование в β -гидроксиалкилпиразолы.

 α,β -Ненасыщенные кетоны и α,β -эпоксикетоны при взаимодействии с гидразингидратом образуют пиразолины, гидроксипиразолины и аллиловые спирты [1—3]. Использование сопряженных α,β -эпоксикетонов в реакции с гидразином позволяет произвести сравнительную оценку реакционной способности эпоксикетонного и енонового фрагментов молекулы и осуществить синтез новых функционально замещенных производных пиразола. С этой целью изучена реакция β -арилакрилоилоксиранов α - гидразингидратом.

Взаимодействие β-арилакрилоилоксиранов Ia—м с гидразингидратом в органическом растворителе в интервале температур 20...100°C приводит к образованию, независимо от степени замещения α- и β-атомов углерода эпоксицикла, характера и положения заместителя в ароматическом кольце, 5(3)-арил-3(5)-(2-гидроксиалкил) пиразолов

IIa-м с выходом 53...82%.

Строение соединений На—м доказано химическими превращениями и данными ИК и ПМР спектров, а для соединения Пв — дополнительно ЯМР ¹³С и масс-спектров. В ИК спектрах пиразолов Па—м отсутствуют полосы поглощения в области 1600...1800 см⁻¹, характерные для двойной связи и карбонильной группы исходных эпоксиенонов Га—м, а полосы валентных колебаний группы NH и OH наблюдаются в области 3450 и 3620 см⁻¹ соответственно. Поглощение пиразольного цикла и ароматического кольца проявляется в виде группы полос в области 1300...1600 см⁻¹.

 $\begin{array}{l} \text{Ia-IIIa, Va} \quad R^1 = R^2 = R^3 = H, \quad Ar = 4 \cdot BrC_6H_4; \quad I6, \quad II6 \quad R^1 = R^2 = R^3 = H, \quad Ar = 4 \cdot ClC_6H_4; \\ \text{IB, IIB, VB,VIIB} \quad R^1 = R^2 = H, \quad R^3 = CH_3, \quad Ar = C_6H_5; \quad Ir, \quad IIr \quad R^1 = R^2 = H, \quad R^3 = CH_3, \quad Ar = 4 \cdot BrC_6H_4; \quad Ie, \quad IIE \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = C_6H_5; \quad Im, \quad IIIm, \quad VIm \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = 4 \cdot BrC_6H_4; \quad Ia, \quad IIa \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = 4 \cdot ClC_6H_4; \quad Ia, \quad IIa \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = 4 \cdot ClC_6H_4; \quad Im, \quad IIIm \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = 4 \cdot ClC_6H_4; \quad Im, \quad IIIm \quad R^1 = R^3 = CH_3, \quad R^2 = H, \quad Ar = 3 \cdot NO_2C_6H_4; \quad Im, \quad IVm \quad R^1 = C_6H_5, \quad Im, \quad IVm \quad R^1 = C_6H_5, \quad R^2 = R^3 = H, \quad Ar = C_6H_5, \quad Im, \quad IVm \quad R^1 = C_6H_5, \quad R^2 = R^3 = H, \quad Ar = C_6H_5, \quad Im, \quad IVm \quad R^1 = C$

Характеристики соединений Па-м, ПІа, д, ж, к-м, ІVл, м, Vа, в, VІв, ж

Выход.	28 28 28 28 28 28 28	64	99	22	63	. 68	52	72	82	54	64	73	51	85	4 5	54	
Наром	7,36; 7,56 (4H, два д, J = 9,0) 7,39; 7,70 (4H, два д, J = 9,0) 7,24; 7,72 (5H, два м) 7,44; 7,63 (4H, два д, J = 9,0)	7,65; (4Н, м)	7,20; 7,70 (5Н, два м)	7,40; 7,6	7,30; 7,33		7,56; 8,05; 8,50 (4H, M)	1011	7,40; 7,6	7,40 (4H,	7,51; 8,05; 8,52 (4H, M)	7,51; 8,05; 8,52 (4H, M)		1,20; 1	_	7,28; 7,66 7,50; 7,33 (4F	
4-H, c	6,33 6,40 6,40	6,40	6,36	6,40	6,38	6,40	6,43	6,37		6,45	09'9	9,60	6,67	6,40	6,40	7,05	n!
Спектр ПМР, м. д. (J, Гц) R'R^-CCHR³	2,71 (2H, τ , $J=6,6$, CH ₂); 3,83 (2H, τ , $J=6,6$, CH ₂ —O) 2,74 (2H, τ , $J=6,6$, CH ₂); 3,81 (2H, τ , $J=6,6$, CH ₂ —O) 1,24 (3H, μ , $J=7,0$, CH ₃); 2,93 (1H, μ . κ , $J=7,0$, CH); 3,63 (2H, μ . μ , $J=7,0$, CH ₂) 1,24 (3H, μ , $J=7,0$, CH ₃); 2,90 (1H, μ . κ , $J=7,0$, CH); 3,53 (2H, μ . κ , $J=10,0$,	$J = I, 0, CH_2$ $1, 17 (3H, \pi, I, I$	$1,03$ (3H, π	CH); 3,60 (211, μ . κ , $J=1,0$, 1,00 (3H, μ , $J=7,0$, CH ₃); CH: 3,75 (1H, π , μ , $J=7,0$	C(1); 3,73 (111, μ . K, $J=7,0$, 0,95 (3H, μ , $J=6,2$, CH ₃); C(1); 3,79 (1H, π , $J=7,0$	0.95 (3H, μ , $J = 6.2$, CH ₃); 0.95 (3H, μ , $J = 6.2$, CH ₃); 0.95 (3H, 0.2); 0.95 (3H, 0.2); 0.95	$J = 6, 2, \text{ CH}_3$); 3,03 (111), $J = 6, 2, \text{ CH}_3$); 1,21	$(2H)_1$, $(3,1)_2$, $(1H)_1$, $(4H)_2$, $(4H)_3$, $(4H$	1,95 (3H, c, CH ₃); 2,68 (3H, c, CH ₂)	J = 7	1,15 (3H, π , $J=7$,		THE CHIS);	$(3H, c, CH_3)$; 1,84 $(3H, c, CH_3)$; $(1H, \mu, J=8,0, CH)$; $6,11$ $(1H, \mu, J=8)$	3,20 (4H, M, CH ₂ —CH ₂)	1,33 (3H, μ , $J=0,4$, CH_3), 2,30 3,60 (3H, m , 2,40 (3H, c, CH_3) 2,44 (3H, c, CH_3)	
$T_{\Pi,\Pi}$ °C	177 179 132 134 128 130 132 133	98100	152153	139 140	131 132	141 142	Масло	136137		9193	133 135	143144	7679 9799	88 89 Macлo		141 142 152 153 185 187	
Брутто-формула	C ₁₁ H ₁₁ BrN ₂ O C ₁₁ H ₁₁ ClN ₂ O C ₁₂ H ₁₄ N ₂ O C ₁₂ H ₁₃ BrN ₂ O	C ₁₂ H ₁₃ CIN ₂ O	$C_{13}H_{16}N_2O$	C ₁₃ H ₁₅ BrN ₂ O	C ₁₃ H ₁₅ CIN ₂ O	C14H18N2O2	C ₁₃ H ₁₅ N ₃ O ₂	C ₁₃ H ₁₆ N ₂ O	C15H15BrN2O3	$C_{16}H_{17}CIN_2O_3$	$C_{17}H_{19}BrN_2O_3$	$C_{17}H_{19}N_2O_5$	C ₁₇ H ₂₀ N ₂ O ₃ C ₂₁ H ₂₀ N ₂ O ₃	C ₁₃ H ₁₄ N ₂ C ₁₇ H ₁₄ N ₂	C11H10BrIN2	C12H10N2O C11H10N2O C11H9BrN2O	7
Соеди-	IIa III6 IIIB IIIr	ПΙД	IIe	ІІж	II3	Пи	ПК	Пл		ППД	IIIж	IIIK				V KB V KB V I XK	

Спектры ПМР β -гидроксиалкилпиразолов IIа—м (таблица) имеют различный вид, определяемый природой заместителей R^1 , R^2 , R^3 и Aг, однако для них характерно наличие синглета протона 4-H пира-

зольного цикла в области 6,30 ... 6.40 м. д.

При ацетилировании уксусным ангидридом соединения IIа,д,ж,к—м превращаются в соответствующие N-ацетил-β-ацетоксиалкилпиразолы IIIа,д,ж,к—м. Дегидратация β-гидроксиалкилпиразолов IIл,м в алкенилпиразолы IVл,м происходит под действием серной кислоты при 40 °С. Йодалкилпиразолы Va,в образуются при нуклеофильном замещении гидроксильной группы соединений IIа,в. При окислении β-гидроксиалкилпиразолов IIв,ж пиридинийхлорхроматом вместо ожидаемых β-пиразолилкарбонильных соединений выделяются 3(5)-ацетилпиразолы VIв,ж. Характеристики полученных соединений приведены в таблице.

Образование β-гидроксиалкилпиразолов На—м протекает через промежуточные оксиранилпиразолины, что подтверждается выделением соединения VIIв при проведении реакции эпоксиенона Ів с гидразингидратом при 10°С в течение 15 мин. Последующая трансформация промежуточных оксиранилпиразолинов включает, по-видимому, электронный сдвиг по аналогии с восстановлением α,β-эпоксикетонов гидразингидратом по Вартону [3] и ароматизацию пиразолинового цикла за счет миграции экзоциклической двойной связи. О внутримолекулярном характере перегруппировки свидетельствует отсутствие влияния структуры субстрата на скорость реакции и строение образующихся веществ.

$$I_{\text{I}a-M} \quad \frac{N_2H_4}{N} \quad \text{VII B} \quad \boxed{ 0^- \\ N = N^+H} \quad \boxed{ H0 \\ N = N} \quad \boxed{ Ar \\ N = N}$$

Принимая во внимание, что аналогичное превращение эпоксипропионилтриазолинов в гидроксипропионилтриазолы наблюдалось ранее [4], можно предположить, что окислительно-восстановительное диспропорционирование является характерным процессом для частично гидрированных NH-азолов, содержащих эпоксидный цикл в боковой цепи.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры веществ в CHCl $_3$ сняты на спектрофотометре Specord IR-75. Спектры ПМР растворов соединений в смеси ацетон D_6 —ДМСО- D_6 получены на спектрометрах Tesla BS-567A (60 МГц) и Bruker WM-360 (360 МГц); внутренний стандарт ГМДС.

Характеристики синтезированных соединений приведены в таблице. Данные элементного анализа на С. Н. N соответствуют расчетным.

3(5)-(2-Гидроксиалкил)-5(3)-арилпиразолы (Па—м). А. К раствору 50 ммоль эпоксикетона Іа—м в метаноле (этаноле, диоксане, уксусной кислоте). при перемешивании в течение $2\dots4$ ч прибавляют 90 ммоль гидразингидрата и оставляют реакционную смесь на 12 ч при $20\,^{\circ}$ С. Растворитель упаривают в вакууме, остаток разбавляют водой до 100 мл, экстрагируют эфиром (4×50 мл) и сушат Na_2SO_4 . После упаривания растворителя до $30\dots50$ мл кристаллизуются β -гидроксиалкилпиразолы Па—м, которые перекристаллизовывают из смесн хлороформ—гексан. Соединение ІІв, спектр ЯМР 13 С: 15,63 (к, 13); 13,44 (д, 13); 13,55 (с, 13); 13,76 (с, 13); 13,77 (три д, 13); 13,75 (с, 13); 14,16 (с, 13); 14,171 [13] [фенилпиразолил], 14] [фенил], 143 [фенилпиразолил], 144 [фенилпиразолил], 144 [фенилпиразолил], 144 [фенилпиразолил], 145 [фенилпиразолил]

Б. Қ кипящему раствору 10 ммоль эпоксикетопа Iж в 30 мл этилового спирта в течение 1 ч прибавляют 23 ммоль гидразнигидрата. Кипятят 2 ч, растворитель упаривают, остаток разбавляют водой, экстрагируют эфиром (3×40 мл) и сушат Na_2SO_4 . После удаления эфира пиразол IIж перекристаллизовывают из смеси хлороформ—гексан, 3:1.

1-Ацетил-5(3)-арил-3(5)-(2-ацетоксиалкил)пиразолы (IIIа,д,ж,к-м). Раствор 5 ммоль β-гидроксиалкилпиразола IIа,д,ж,к-м в 2 мл уксусного ангидрида кипятят

1 ч с обратным холодильником. Избыток реагента отгоняют в вакууме, остаток обрабатывают водным раствором бикарбоната натрия, экстрагируют эфиром (4×50 мл) и сушат Na₂SO₄. Эфир упаривают и полученные β-ацетокси-N-ацетилпиразолы IIIa,д,ж,к-м кристаллизуют из смеси ацетон-гексан.

3(5)-(1-Алкенил)-5(3)-фенилпиразолы (IVл,м). Қ 2 мл конц. Н₂SO₄, охлажденной до 5°C, прибавляют 5 ммоль β-гидроксиалкилпиразола Пл,м, кристаллы растирают до их полного растворения и нагревают 30 мин на водяной бане при 40°C. Реакционную смесь выливают в 100 мл воды, выделившееся масло экстрагируют эфиром (4×20 мл) и сушат Na₂SO₄. После удаления эфира соединение Vл перекристаллизовывают из гексана.

5(3)-Арил-3(5)-(2-йодалкил) пиразолы (Va,в). Смесь 12,7 ммоль пиразола Иа,в, 3,34 г (12,7 ммоль) йода и 0,28 г (9 ммоль) красного фосфора в 75 мл хлороформа кипятят 10 ч, охлаждают и хроматографируют на колонке ($2\! imes\!25$ см) с оксидом алюминия (40/250), элюент хлороформ-ацетон, 1:1. После удаления растворителя соединения Va,в кристаллизуют из толуола.

5(3)-Арил-3(5)-ацетилпиразолы (VIв,ж). В суспензию 7 ммоль пиридинийхлорхромата в 40 мл безводного хлористого метилена при 20°C прибавляют 5 ммоль пиразола ІІв,ж в 20 мл хлористого метилена, перемешивают 1 ч 30 мин и разбавляют 30 мл эфира. Раствор хроматографируют на колонке 2×20 см с силикагелем (40/100), элюент эфир. Растворитель упаривают, полученные кристаллы ацетилпиразолов VIв,ж перекристаллизовывают из смеси хлороформ—гексан, 1:2.

3-(1-Метил-1,2-эпоксиэтил)-5-фенил-2-пиразолин (VIIв, $C_{12}H_{14}N_2O$). Растворяют в 15 мл метанола 10 ммоль эпоксикетона Ів и при 10°C прибавляют 12,5 ммоль гидразингидрата. Через 15 мин реакционную смесь разбавляют 10 мл воды, выпавший осадок отфильтровывают, промывают водой, затем метанолом и сушат в вакууме. Выход соединения VIIв составляет 92%, $T_{\rm п.т}$ 113...115 °C. При попытке перекристаллизовать соединение VIIв происходит его изомеризация в β-гидроксиэтилпиразол IIв. Спектр ПМР: 1,31 (3H, c, CH₃); 2,73 (2H, м, CH₂); 2,90 (2H, м, CH₂); 4,14 (1H c, NH); 4,56 (1H, м, CH); 7,19 м. д. (5H, м).

СПИСОК ЛИТЕРАТУРЫ

- 1. Elguero J., Mazzin C. // Bull. soc. chim. France. 1973. N 12. P. 3401.

- 2. Coffen D. L., Korzan D. G. // J. Org. Chem. 1971. Vol. 36. Р. 390. 3. Wharton P. S. // J. Org. Chem. 1961. Vol. 26. Р. 3615. 4. Звонок А. М., Кузьменок Н. М., Станишевский Л. С. // ХГС. 1988. № 8. C. 1022.

Научно-исследовательский институт физико-химических проблем Белорусского государственного университета им. В. И. Ленина, Минск 220080

Поступило в редакцию 10.10.88