ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 12, с. 1874–1880

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 541.65+536.413.2+537.31.32+544.016.2

СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} (0.00 \leq x \leq 0.40)

© 2022 г. А. И. Клындюк^{а, *, **}, Я. Ю. Журавлева^а

^аБелорусский государственный технологический университет, ул. Свердлова, 13А, Минск, 220006 Беларусь *e-mail: klyndyuk@belstu.by **e-mail: kai_17@rambler.ru Поступила в редакцию 28.04.2022 г. После доработки 22.06.2022 г. Принята к публикации 04.07.2022 г.

Методом твердофазных реакций получены твердые растворы двойных перовскитов $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$, исследована их кристаллическая структура, кислородная нестехиометрия (δ) и электрогранспортные свойства (электропроводность, коэффициент термо-ЭДС). При $0.0 \le x \le 0.05$ перовскиты $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$ кристаллизуются в тетрагональной (пр. гр. P4/mmm), а при $0.10 \le x \le 0.40 - в$ орторомбической сингонии (пр. гр. Pmmm) и являются полупроводниками *p*-типа. Частичное замещение бария кальцием в $NdBaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$ приводит к уменьшению размеров элементарной ячейки и кислородной нестехиометрии образующихся при этом твердых растворов, снижению их электропроводности и возрастанию коэффициента термо-ЭДС. Вычислены значения энергий активации процессов электропереноса, взвешенной подвижности и концентрации носителей заряда в исследованных материалах.

Ключевые слова: слоистые перовскиты, термическая стабильность, электропроводность, коэффициент термо-ЭДС

DOI: 10.31857/S0044457X22600669

ВВЕДЕНИЕ

Кислорододефицитные двойные перовскиты типа RBaMe'Me"O_{5 + δ} (R = Y, редкоземельный элемент (P3Э), Me', Me" – 3*d*-элемент) представляют интерес как функциональные материалы различного назначения, включая катодные материалы для твердооксидных топливных элементов (**TOTЭ**), материалы рабочих элементов химических полупроводниковых сенсоров газов, высокотемпературные термоэлектрики, контейнеры кислорода, катализаторы (и фотокатализаторы) окисления органических соединений и др., что обусловлено наличием в их структуре лабильного кислорода (δ), а также высокими значениями электрической проводимости и коэффициента термо-ЭДС [1–5].

Перспективными катодными материалами среднетемпературных ТОТЭ с протонпроводящими твердыми электролитами являются кислорододефицитные слоистые кобальтиты РЗЭ—бария $RBaCo_2O_{5+\delta}$, термодинамически устойчивые к химическому взаимодействию с электролитами на основе церата и цирконата бария [6]. Соединения $RBaCo_2O_{5+\delta}$ характеризуются высокой электропроводностью и электрохимической активно-

стью в реакции восстановления кислорода [2–4, 7], однако их применение на практике ограничено большими значениями температурного коэффициента линейного расширения (**ТКЛР**), составляющими (15–29) × 10^{-6} K⁻¹ [8, 9], сильно превышающими величины ТКЛР традиционно используемых в ТОТЭ твердых электролитов – $(10-13) \times 10^{-6}$ K⁻¹ [10].

В работах различных авторов было неоднократно показано, что частичное замещение в $RBaCo_2O_{5+\delta}$ кобальта другими 3*d*-элементами, а бария — иными щелочноземельными элементами позволяет существенно снизить величину ТКЛР образующихся при этом твердых растворов, а также во многих случаях улучшить их электрохимическую производительность [7, 11-20], при этом комплексное замещение ионов в А или/и В-позициях их кристаллической структуры оказывается более эффективным, чем монозамещение [12, 13, 15, 17, 19, 20]. Учитывая это, синтез комплекснозамещенных производных слоистых кобальтитов РЗЭ-бария и исследование их физико-химичсских и функциональных свойств представляют значительный интерес.

Ранее нами было изучено влияние частичного замещения кобальта железом и медью, а бария стронцием на кристаллическую структуру, термическую стабильность и физико-химические свойства твердых растворов NdBa_{1-x}Sr_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} (0.02 $\leq x \leq$ 0.20) [21].

Цель настоящей работы — исследование влияния частичного замещения бария кальцием на кристаллическую структуру, термическую стабильность и электротранспортные свойства твердых растворов $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$ (0.00 $\leq x \leq 0.40$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамические образцы слоистых кислороддефицитных перовскитов состава NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ} (x = 0.00, 0.05, 0.10, 0.20 и 0.40) получали методом твердофазных реакций из Nd₂O₃ (99.9%), BaCO₃ (99.0%), CaCO₃ (99.0%), Fe₂O₃ (99.7%), Co₃O₄ (99.0%) и CuO (99.0%), которые смешивали в заданных стехиометрических соотношениях при помощи мельницы Pulverizette 6.0 (Fritsch, Германия, материал тиглей и мелющих шаров – ZrO₂), прессовали в таблетки диаметром 19 мм и высотой 2-3 мм и отжигали на воздухе в течение 40 ч при 1173 К [17, 20, 211. Отожженные образцы измельчали в агатовой ступке, подвергали повторному помолу при помощи мельницы Pulverizette 6.0 и прессовали в бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе в течение 9 ч при 1273 К. Для измерения электропроводности из спеченной керамики вырезали образцы в форме прямоутольных параллелепипедов размером 4 × 4 × 2 мм.

Идентификацию образцов и определение параметров их кристаллической структуры осуществляли при помощи рентгенофазового анализа (рентгеновский дифрактометр Bruker D8 XRD Advance, США, Си K_{α} -излучение) и ИК-спектроскопии поглощения (ИК-Фурье-спектрометр Nexus E.S.P. (Thermo Scientific, США).

Кислородную нестехиометрию (δ) твердых растворов NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ} определяли при помощи иодометрического титрования (косвенно) [22], исходя из содержания в образцах ионов переходных металлов в различных степенях окисления (Co⁴⁺, Co³⁺, Fe³⁺, Cu²⁺), которые восстанавливались в процессе титрования до низших степеней окисления (Co²⁺, Fe²⁺, Cu⁺), см. Приложение.

Величину кажущейся плотности (ρ_{κ}) керамики вычисляли по геометрическим размерам и массе образцов, а ее пористость (П) находили по формуле $\Pi = (1 - \rho_{\kappa}/\rho_{\tau}) \times 100\%$, где ρ_{τ} – теоретическая (рентгенографическая) плотность образцов. Микроструктуру керамических образцов изучали при помощи цифрового металлографического микроскопа ALTAMI MET 1D (Altami, РФ) и сканирующего электронного микроскопа (СЭМ) JSM-5610 LV (JEOL, Япония). Элементный состав керамики определяли методом энергодисперсионного микрорентгеноспектрального анализа (**MPCA**) на СЭМ NeoScope JCM-7000 (JEOL, Япония) и EVO 10 (Zeiss, Германия) с системой анализа EDX ULTIM MAX (Oxford Instruments, Великобритания).

Термическую стабильность порошкообразных образцов NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+δ} исследовали при помощи термоаналитической системы TGA/DSC-1/1600 HF (Mettler Toledo Instruments, Швейцария) на воздухе в интервале температур 300-1100 К. Электропроводность (о) керамики измеряли на постоянном токе 4-контактным мстодом (цифровые вольтметры В7-58, В7-53, "Завод СВТ", Республика Беларусь; источник питания Б5-47, "Измеритель", Армения) на воздухе в интервале температур 300-1100 К со скоростью нагрева/охлаждения ~5 К/мин. Коэффицисит термо-ЭДС (S) керамики определяли относительно серебра (цифровой вольтметр В7-65/3, "Завод СВТ", Республика Беларусь) на воздухе в интервале температур 300-1100 К. Граднент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20—25 К. Перед измерениями на поверхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1073 К в течение 15 мин [23]. Значения кажущихся энергий активации электропроводности (E_{σ}) и термо-ЭДС образцов (Е_S) рассчитывали из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам МРСА, катионный состав синтезированных образцов с учетом погрешности метода соответствовал заданному составу шихты (рис. S1–S3).

завершения После синтеза образцы $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$ были однофазными в пределах погрешности РФА (рис. 1а-1в) и имели структуру двойного перовскита, искаженного тетрагонально ($a = b \approx a_p$, $c \approx 2a_p$, пр. гр. P4/mmm [11, 17, 20]) для 0.00 ≤ x ≤ 0.05 и орторомбически (a≠b≈a_p, c≈2a_p, пр. гр. Рттт [7, 24]) для $0.10 \le x \le 0.40$. Понижение симметрии структуры фаз NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+δ} при x > 0.5 от тетрагональной до орторомбической подтверждается, в частности, превращением дублетов (110), (102) и (200), (004) в триплеты (100), (012), (102) и (020), (200), (004) соответственно (рис. 1б, 1в). Параметры элементарной ячейки твердых

Рис. 1. Рентгеновские дифрактограммы (а–в) и ИК-спектры поглощения (г) порошков твердых растворов NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ}: x = 0.00 (1), 0.05 (2), 0.10 (3), 0.20 (4), 0.40 (5). Т – тетрагональная сингония, О – орторомбическая сингония.

растворов NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} закономерно уменьшались (табл. 1) при частичном замещении бария кальцием (согласно [25], для KЧ = =12 $R_{Ba^{2+}} = 0.161$ нм, $R_{Ca^{2+}} = 0.134$ нм), при этом величины степеней тетрагонального (η) и орторомбического искажения (ε) их структуры с ростом *x* изменялись незначительно (η ~ 0.984–0.985, ε ~ ~ 0.002).

Частичное замещение бария кальцием в NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ} приводит к уменьшению кислородной нестехиометрии (δ) от 0.72 для x = -0.00 до 0.55 для x = 0.40 (табл. 1).

ИК-спектры поглощения порошков NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+δ} содержат три полосы поглощения с экстремумами при 355–374 см⁻¹ (v₁), 575–582 см⁻¹ (v₂) и 652 см⁻¹ (v₃) (рис. 1г), которые соответствуют валентным (v₂, v₃) и деформационным (v₁) колебаниям связей (Fe,Co,Cu)– O–(Fe,Co,Cu) в слоях [(Fe,Co,Cu)O₂] (v₁, v₂) и в направлении, перпендикулярном этим слоям (вдоль оси *c*) (v₃) в кристаллической структуре этих фаз [26]. При изменении *х* положения полос поглощения v_2 и v_3 практически не менялись, из этого следует, что частичное замещение $Ca^{2+} \rightarrow Ba^{2+}$ в NdBaFeCo_{0.5}Cu_{0.5}O₅₊₈ не сказывается на интенсивности энергии металл-кислородных взаимодействий в структуре данного слоистого оксида.

Пористость спеченной керамики NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ} с ростом *x* возрастала для состава с *x* = 0.05, а при дальнейшем увеличении *x* снижалась (табл. 2). Полученные результаты указывают на ухудшение спекаемости двойного перовскита NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ} при замещении в нем до 5 мол. % бария кальцием и улучшение спекаемости при более высоких степенях замещения. Согласно результатам микроскопических исследований, форма зерен керамики NdBa_{1-x}Ca_xFe-Co_{0.5}Cu_{0.5}O_{5+ δ} близка к изометрической, а их величина изменяется в пределах нескольких мкм и слабо зависит от катионного состава образцов.

Согласно данным термического анализа, начиная с температур $T^* = 650-730$ К наблюдается

Таблица 1. Индекс кислородной нестехиометрии (δ), сингония, параметры (a, b, c), объем (V), степень тетрагонального (T, $\eta = c/(2\sqrt{ab})$) и орторомбического (O) искажения элементарной ячейки ($\varepsilon = 2(a - b)/(a + b)$) слоистых перовскитов NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ}

x	δ	Сингония	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³	η	3
0.00	0.72	Т	0.3914(1)	0.3914(1)	0.7715(2)	0.1182(3)	0.9847	-
0.05	0.64	Т	0.3915(1)	0.3915(1)	0.7706(3)	0.1181(1)	0.9841	
0.10	0.56	0	0.3919(2)	0.3910(1)	0.7700(2)	0.1180(7)	0.9836	0.0023
0.20	0.55	0	0.3904(2)	0.3913(1)	0.7698(4)	0.1176(2)	0.9848	0.0024
0.40	0.55	0	0.3901(2)	0.3908(2)	0.7689(4)	0.1172(2)	0.9846	0.0018

Таблица 2. Значения кажущейся плотности ($\rho_{\text{каж}}$), пористости (П) и энергий активации процессов электропереноса ($E_{\sigma}, E_{S} = E_{p}, E_{m}$) спеченной керамики состава NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ}

x	ρ _{каж} , г/см ³	П, %	<i>Е</i> _о , эВ	<i>Е_S</i> , эВ	<i>Е</i> _m , эВ
0.00	6.18	9.8	0.254	0.048	0.206
0.05	4.96	26.5	0.193	0.054	0.139
0.10	6.20	7.2	0.314	0.084	0.230
0.20	6.19	4.9	0.260	0.092	0.168
0.40	5.98	4.8	0.238	0.085	0.153

небольшая потеря массы (0.3-0.5%) (рис. 2а), обусловленная выделением из образцов кислорода (б) [20, 21]. Уменьшение величины кислородной нестехиометрии составило от 0.14 для x = 0.0до 0.08 для x = 0.40, а значения δ при температуре 1100 К снижались от 0.58 для *x* = 0.0 до 0.42 для *x* = = 0.10 (рис. 2б). Уменьшение величины T^* (температуры начала выделения кислорода из решетки) от 655 K для x = 0.00 до 650 K для x = 0.05 (рис. 2в) указывает на снижение термической стабильности слоистого перовскита NdBaFe-Со_{0.5}Си_{0.5}О_{5 + б} при замещении 5 мол. % бария кальцием в его структуре. Отметим, что аналогичный эффект был обнаружен нами ранее при изучении твердых растворов $NdBa_{1-r}Sr_rFeCo_0 SCu_0 SO_{5+\delta}$ [21].

На основании результатов исследования электротранспортных свойств (рис. 3а, 3б) можно заключить, что твердые растворы $NdBa_{1-x}Ca_{x}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ представляют собой полупроводники ($\partial \sigma / \partial T > 0$) *р*-типа (S > 0). Электропроводность тетрагонально искаженных двойных перовскитов (x = 0.00, 0.05) вблизи 730 К начинает уменьшаться ($\partial \sigma / \partial T < 0$), при этом изменяется характер температурной зависимости их коэффициента термо-ЭДС в области температур 660-680 К от $\partial S/\partial T < 0$ до $\partial S/\partial T > 0$, причиной этого является выделение из их структуры кислорода (рис. 2). Электропроводность керамики $NdBa_{1-x}Ca_{x}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ снижается, а ее коэффициент термо-ЭДС увеличивается с ростом степени замещения бария кальцием (рис. 3в, 3г) вследствие уменьшения кислородной нестехиометрии (табл. 1) и снижения концентрации основных носителей заряда ("дырок"), причем всличины электротранспортных свойств керамики в областях с тетрагональным и орторомбическим искажением структуры перовскита близки друг к другу.

Рис. 2. Температурные записнмости потери массы (а) и кислородной нестехиометрии (б) слоистых перовскитов $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$: x = 0.00 (1), 0.05 (2), 0.10 (3), 0.20 (4) и 0.40 (5), а также концентрационная зависимость температуры начала потери массы (7*) (в) порошков состава $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$.

Рис. 3. Температурные (a, б) и концентрационные (в, г) зависимости удельной электропроводности (a, в) и коэффициента термо-ЭДС (б, г) спеченной керамики состава $NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+\delta}$: x = 0.00 (1), 0.05 (2), 0.10 (3), 0.20 (4) и 0.40 (5) при температурах 500 (6) и 800 К (7).

Существенное различие зависимостей $\sigma = f(T)$ для твердых растворов NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ}, имеющих тетрагональную ($0.00 \le x \le 0.05$) и орторомбическую структуру ($0.10 \le x \le 0.40$) и характеризующихся сходными кривыми потери массы (рис. 2a), можно объяснить значительными различиями в величинах их кислородной нестехиометрии. Величина б тетрагональных фаз достаточно высока, степень заполнения кислородом слоев $-NdO_{\delta}$ - составляет 72% для x = 0.0 и 64% для x = 0.05, поэтому перенос заряда осуществляется как в проводящих [(Fe,Co,Cu)O₂]-слоях их структуры, так и в направлении, перпендикулярном этим слоям. Выделение кислорода приводитк частичному восстановлению ионов кобальта в тетрагональных фазах NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ}, a также к разрушению проводящих цепочек в направлении оси с (перпендикулярно слоям [(Fe,Co,Cu)O₂]), в результате чего при повышенных температурах электропроводность этих фаз начинает существенно снижаться. Кислородная нестехиометрия орторомбических фаз NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} заметно ниже (табл. 1), степень заполнения кислородом слоев -NdO₆- составляет только 55-56% при комнатной температуре и 42-47% при 1100 К. В этих фазах электроперенос, по всей видимости, осуществляется преимущественно В слоях [(Fe,Co,Cu)O₂], поэтому выделение кислорода из слоев -NdO₆- в меньшей степени влияет на величину электропроводности составов с $0.10 \le x \le$ ≤ 0.40 и для них вместо снижения проводимости наблюдается замедление роста проводимости (рис. 3a). Следует отметить, что участок замедленного роста о при $T < T^*$ наблюдается и для образцов с $0.00 \le x \le 0.05$, однако в данном случае он связан, вероятно, с частичным перераспределением кислорода в структуре керамики непосредственно перед выделением из ее объема.

На зависимостях S = f(T) твердых растворов с орторомбической структурой ($0.10 \le x \le 0.40$) вблизи 410-420 К была обнаружена дополнительная аномалия в виде максимума (рис. 36), обусловленная, по-видимому, изменением спинового состояния ионов кобальта в их структуре подобно тому, как это наблюдалось ранее для других перовскитных кобальтитов [20, 27, 28].

Проводимость перовскитов RBaMe'Me"O₅ + δ носит поляронный характер [20, 21], и зависимости $\sigma = f(T)$ и S = f(T) для них подчиняются уравнениям $\sigma = (A/T) \exp(-E_{\sigma}/kT)$ и $S = (k/e)(-E_{S}/kT +$ + B), где $E_{\sigma} = E_{S} + E_{m}$ и E_{S} – энергии активации электропроводности и термо-ЭДС, причем E_{S} представляет собой энергию возбуждения поляронов, а E_{m} – энергию активации их переноса [29]. Как видно из представленных в табл. 2 данных, с ростом *x* энергия возбуждения поляронов в сложных оксидах NdBa₁ – _xCa_xFeCo_{0.5}Cu_{0.5}O₅ + δ возрастает, а энергия их активации снижается как для тетрагонально, так и для орторомбически искаженных соединений.

С использованием экспериментально полученных значений удельной электропроводности и коэффициента термо-ЭДС нами были рассчитаны значения взвешенной подвижности (µ_в) и концентрации носителей заряда (р) [30] в спеченной керамике NdBa_{1 – x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} (см. Приложение). Установлено, что в интервале температур 400-600 К значения Ц. изменяются в пределах ≈ $0.2-0.8 \text{ м}^2/(\text{B c})$, возрастают при увеличении температуры, что характерно для перескокового (поляронного) механизма проводимости [31], и уменьшаются (за исключением состава с x = 0.05) при частичном замещении бария кальцием. Концентрация носителей заряда в том же интервале температур изменяется в пределах $(\approx 3-37) \times 10^{19}$ см⁻³, экспоненциально возрастает при увеличении температуры и в целом уменьшается при замещении бария кальцием NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ}. Так, при 500 К концентрация носителей заряда в образцах с x = 0.00 и 0.40 составляет $\approx 17 \times 10^{19}$ и $\approx 5 \times 10^{19}$ см⁻³ соответственно.

ЗАКЛЮЧЕНИЕ

Твердофазным методом синтезированы керамические образцы твердых растворов NdBa_{1-x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5+ δ} (0.00 $\leq x \leq$ 0.40), изучена их структура, термическая стабильность, электропроводность и коэффициент термо-ЭДС. На основании экспериментальных данных рассчитаны значения параметров электропереноса, подвижности и концентрации носителей заряда в этих материалах. Установлено, что слоистые перовскиты NdBa_{1 - x}Ca_xFeCo_{0.5}Cu_{0.5}O_{5 + δ} при $x \leq$ ≤ 0.05 имеют тетрагональную, а при $0.10 \leq x \leq 0.40$ орторомбическую структуру и являются полупроводниками р-типа, при этом электропроводность образцов с $x \le 0.05$ при повышенных температурах начинает уменьшаться вследствие выделения из образцов кислорода. Частичное замещение бария кальцием в NdBaFeCo_{0.5}Cu_{0.5}O_{5 + 8} приводит к уменьшению размера элементарной ячейки этого сложного оксида, содержания в нем кислорода (δ) и концентрации носителей, увеличению подвижности носителей заряда и коэффициента термо-ЭДС и снижению электропроводности. Для имеющих орторомбическую структуру твердых растворов (0.10 ≤ *x* ≤ 0.40) вблизи 410-420 К обнаружена аномалия термо-ЭДС в виде максимума, обусловленная, вероятно, изменением спинового состояния ионов кобальта в их составе.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы сообщают об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Онлайн-версия содержит дополнительные материалы, доступные по адресу https://doi.org/10.31857/S0044457X22600669.

СПИСОК ЛИТЕРАТУРЫ

- 1. *da Silva F.S., de Souza T.M.* // Int. J. Hydrogen Energy. 2017. V. 42. № 41. P. 26020. https://doi.org/10.1016/j.ijhydene.2017.08.105
- Afroze S., Karim A.H., Cheok Q. et al. // Front. Energy. 2019. V. 13. P. 770.
 - https://doi.org/10.1007/s11708-019-0651-x
- 3. Kaur P., Singh K. // Ceram. Int. 2020. V. 46. № 5. P. 5521.

https://doi.org/10.1016/j.ceramint.2019.11.066

- 4. Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи химии. 2021. Т. 90. № 6. С. 644. [Istomin S. Ya., Lyskov N.V., Mazo G.N. et al. // Russ. Chem. Rev. 2021. V. 90. № 6. Р. 644. https://doi.org/10.1070/RCR4979]
- Klyndyuk A.I., Chizhova E.A., Kharytonau D.S. et al. // Materials. 2022. V. 15. № 1. P. 141. https://doi.org/10.3390/ma15010141
- Tsvetkov D., Tsvetkova N., Ivanov I. et al. // Energies. 2019. V. 12. P. 417. https://doi.org/10.3390/en12030417
- Kim J.-H., Manthiram A. // J. Mater. Chem. 2015.
 V. 3. № 48. P. 24195. https://doi.org/10.1039/C5TA06212H
- Kim J.-H., Manthiram A. // J. Electrochem. Soc. 2008.
 V. 155. № 4. P. B385. https://doi.org/10.1149/1.2839028
- 9. Li R., Jin F., Zhang Y. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 16. P. 8467. https://doi.org/10.1016/j.ijhydene.2019.01.296
- 10. *Kharton V., Marques F., Atkinson A.* // Solid State Ionics. 2004. V. 174. № 1–4. P. 135. https://doi.org/10.1016/j.ssi.2004.06.015
- 11. Cherepanov V.A., Aksenova T.V., Gavrilova L.Y. et al. // Solid State Ionics. 2011. V. 188. № 1. P. 53. https://doi.org/10.1016/j.ssi.2010.10.021
- Lin Y., Jin F., Yang X. et al. // Electrochim. Acta. 2019. V. 297. P. 344. https://doi.org/0.1016/j.electacta.2018.11.214
- Zhang S.-L., Chen K., Zhang A.-P. et al. // Ceram. Int. 2017. V. 43. P. 11648.
- https://doi.org/0.1016/j.ceramint.2017.05.438 14. *Kim N.-I., Cho S.-H., Park S.H. et al.* // J. Mater.
- Chem. A. 2018. V. 6. P. 17807. https://doi.org/10.1039/C8TA06236F
- Jin F., Li Y., Wang Y. et al. // Ceram. Int. 2018. V. 44. P. 22489. https://doi.org/10.1016/j.ceramint.2018.09.018
- Cordaro G., Donazzi A., Pelosato R. et al. // J. Electrochem. Soc. 2020. V. 167. P. 024502. https://doi.org/10.1149/1945-7111/ab628b
- 17. Klyndyuk A.I., Mosiałek M., Kharitonov D.S. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 32. P. 16977. https://doi.org/10.1016/j.ijhydene.2021.01.141

КЛЫНДЮК, ЖУРАВЛЕВА

- Yao C., Yang J., Zhang H. et al. // J. Alloys Compd. 2021. V. 883. P. 160759. https://doi.org/10.1016/j.jallcom.2021.160759
- 19. Yang Q., Tian D., Liu R. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5630. https://doi.org/10.1016/j.ijhedene.2020.11.031
- Klyndyuk A.I., Kharytonau D.S., Mosiałek M. et al. // Electrochim. Acta. 2022. V. 41. P. 140062. https://doi.org/10.1016/j.electacta.2022.140062
- 21. *Klyndyuk A.I., Zhuravleva Ya.Yu., Gundilovich N.N.* // Chimica Techno Acta. 2021. V. 8. № 3. P. 20218301. https://doi.org/10.15826/chimtech.2021.8.3.01
- Urusova A.S., Cherepanov V.A., Aksenova T.V. et al. // J. Solid State Chem. 2013. V. 202. P. 207. https://doi.org/10.1016/j.jssc.2013.03.037
- 23. Клындюк А.И., Чижова Е.А., Латыпов Р.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 248. [Klyndyuk A.I., Chizhova E.A., Latypov R.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 2. Р. 237. https://doi.org/10.1134/S0036023622020073] https://doi.org/10.31857/S0044457X22020076

24. Pang S., Su Y., Yang G. et al. // Ceram. Int. 2018. V. 44. № 17. P. 21902.

https://doi.org/10.1016/j.ceramint.2018.08.301

- 25. Shannon R.D. // Acta Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 26. Atanassova Y.K., Popov V.N., Bogachev G.G. et al. // Phys. Rev. B. 1993. V. 47. P. 15201. https://doi.org/10.1103/PhysRevB.47.15201
- 27. Itoh M., Hashimoto J., Yamaguchi S. et al. // Physica B. 2000. V. 281-282. P. 510.
- 28. Taskin A., Lavrov A. // Phys. Rev. 2006. V. 73. P. 1211101.
 - https://doi.org/10.1103/PhysRevB.73.121101101
- 29. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982. 368 с.
- 30. Snyder G.J., Snyder A.H., Wood M. et al. // Adv. Mater. 2020. V. 35. P. 2001537. https://doi.org/10.1002/adma.202001537
- Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 197 с.

1880

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 12, с. 1881–1890

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 544.6.076.328.3:546.774:546.776

КОМПОЗИТЫ НА ОСНОВЕ ОКСИДОВ МОЛИБДЕНА

© 2022 г. З. А. Фаттахова^{*a*}, Г. С. Захарова^{*a*}, *

^аИнститут химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия *e-mail: volkov@ihim.uran.ru Поступила в редакцию 25.05.2022 г. После доработки 09.07.2022 г.

Принята к публикации 19.07.2022 г.

Изучены условия формирования композитов MoO_2/C и MoO_3/C , полученных гидротермальной обработкой реакционной смеси пероксомолибденовой и винной кислот с последующим отжигом в инертной атмосфере. Определен фазовый состав, кристаллическая структура, морфология, термическая стабильность и текстурные характеристики синтезированных соединений. Ключевым параметром, определяющим состав, структуру, текстурные и термические свойства композитов, являет ся молярное соотношение исходных компонентов реакционной массы. Предложен механизм формирования композитов MoO_2/C и MoO_3/C . Показана возможность их использования в качестве активного материала твердофазных ионоселективных электродов для определения концентрации ионов калия в растворе. Электроды на основе нанокомпозита MoO_2/C стабильны в работе и проявляют калийную функцию в интервале $1 \le pC_{K^+} \le 5$ при кислотности рабочих растворов $5 \le pH \le 6$ с угловым коэффициентом, равным ~54 мB/pC_{K^+}. Определены коэффициенты селективности электродов в ряду одно- и двухзарядных катионов.

Ключевые слова: композит, оксид молибдена, углерод, винная кислота, гидротермальный синтез, ионоселективные свойства

DOI: 10.31857/S0044457X22600864

ВВЕДЕНИЕ

Оксиды молибдена МоО2 и МоО3 широко исследуются как электродные материалы литиевых источников тока [1, 2], суперконденсаторов [3], в качестве фотокатализаторов [4, 5], датчиков влажности [6], газосенсорных материалов [7], ионоселективных материалов для определения концентрации ионов щелочных и щелочноземельных металлов в растворе [9, 10]. Известно, что использование оксидов в наноразмерном состоянии, а также композитов на их основе позволяет существенно улучшить физико-химические свойства соединений, определяющих их практическую значимость. Например, анодный материал литиевых источников тока на основе МоО3 с морфологией частиц, подобной наноремням, демонстрирует разрядную емкость 632 мАч/г при плотности тока 100 мА/г после 50 циклов заряда/разряда с кулоновской эффективностью 73%, в то время как использование нанокомпозита МоО₁/С позволяет получить разрядную емкость до 1000 мАч/г при плотности тока 100 мА/г с кулоновской эффективностью 98% [11]. Улучшенные энергонакопительные характеристики проявляет и композит МоО2/оксид графена по сравнению с микро- и наноразмерным МоО₂. Так, удельная емкость композита составляет 615 Φ/r , что примерно в два раза превышает аналогичное значение для чистого MoO₂ (300 Φ/r) [12]. Поэтому актуальной задачей является создание нанокомпозитов на основе оксидной матрицы с углеродом, обеспечивающей значительное улучшение электрохимического поведения системы (увеличение проводимости, транспортных свойств, улучшение межфазного контакта и структурной стабильности материала).

Существует несколько подходов, позволяющих вводить углерод в состав композита. Первый подход предусматривает введение углерода как самостоятельного соединения. К таким источинкам углерода можно отнести активированный уголь [13], углеродные нанотрубки [14, 15], оксид графена [16, 17]. Недостатком указанного способа введения углеродсодержащих компонентов является необходимость проведения активации их поверхности. Использование в качестве источника углерода соединений, которые легко карбонизируются в процессе синтеза композита и обеспечивают равномерное формирование оксидной и углеродной составляющих композита, характерно для второго подхода в синтезе композитов. В этом случае роль источника углерода могут выполнять