Е. В. Кашевская, доцент БНТУ

<u>КРИТЕРИИ КАЧЕСТВА АВТОМОБИЛЬНЫХ ДОРОГ И ИХ УЧЕТ В СИСТЕМЕ</u> МОНИТОРИНГА ДОРОЖНО-ТРАНСПОРТНОГО КОМПЛЕКСА

In article questions of a modern condition of a road and transport complex of Byelorussia are considered. The system of the criteria used for monitoring of a condition of highways, and also an opportunity of their use for an estimation of quality of highways is analyzed.

Для конца прошлого века и начала текущего характерен стремительный прогресс в области автомобилестроения. По некоторым данным, ежегодно в мире производится около 50 млн. автомобилей.

Основная тенденция современного автомобилестроения – рост скоростей движения, осевых нагрузок и общей грузоподъемности транспортных средств.

Непрерывно увеличиваются объемы перевозок автомобильным транспортом. За 12 месяцев 2005 г. в Республике Беларусь автотранспортными предприятиями, подведомственными Минтрансу, было перевезено 55,8 млн. т грузов и 1096,1 млн. пассажиров. Задание, доведенное правительством Минтрансу по данным показателям на 2005 г., было перевыполнено: по объемам перевозок грузов — на 2,1 %, пассажиров — на 1,8 %[1].

Расширение спроса на автомобильные перевозки на рынке транспортных услуг сопровождается новыми, более высокими требованиями к качеству сети автомобильных дорог и дорожной инфраструктуры [2].

По состоянию на 01.01.2006 г. сеть автомобильных дорог характеризуется данными табл. 1.

С учетом прогнозного социально-экономического развития страны и Государственной программы развития международных автомобильных перевозок пассажиров и грузов на 2003—2008 годы прогнозируется, что к 2008 г. [3]:

- объем международных перевозок грузов возрастет до 11 млн. т. в год, ежегодный прирост составит 3%;
- ежегодный рост объема международных перевозок пассажиров легковыми автомобилями и автобусами составит около 10%.

Объем международных автомобильных перевозок грузов к 2015 г. планируется увеличить

в 1,5 раза. Прогнозируется увеличение численности парка грузовых автомобилей и автобусов. При этом ожидаются изменения в структуре парка транспортных средств — возрастет удельный вес крупнотоннажных грузовых автомобилей грузоподъемностью до 25 т, автобусов средней и малой вместимости.

Повышение уровня доходов населения будет способствовать росту уровня автомобилизации, что приведет к увеличению интенсивности движения на дорогах. К 2015 г. прогнозируется рост числа автомобилей в Республике Беларусь до 4 млн.

По А. П. Васильеву [4], потребительские свойства дороги — это совокупность ее транспортно-эксплуатационных показателей, влияющих на эффективность и безопасность автомобильного транспорта и отражающих интересы пользователей дорог.

К основным потребительским свойствам относятся:

- скорость, непрерывность, безопасность и удобство движения;
- пропускная способность и уровень загрузки движением;
- способность пропускать автомобили и автопоезда с разрешенными для движения осевыми нагрузками и габаритами.

В настоящее время среднюю скорость движения автомобилей принято оценивать по эксплуатационному коэффициенту обеспеченности расчетной скорости K_{pc3} [4], который представляет собой отношение максимальной скорости движения на каждом участке эксплуатируемой дороги $V_{\phi max}$ к расчетной скорости для данной категории дороги и рельефа местности V_p , принятой в соответствии с [5].

Наличие автомобильных дорог общего пользования в Республике Беларусь на 01.01.2006 г.

Наименование	Всего, км	Дороги, км		
	Beero, KM	Республиканские	Местные	
Дороги	81 471	15 441	66 030	
С твердым покрытием	70 449	15 441	30 267	
В т. ч. гравийные и щебеночные	25 063	322	24 741	
грунтовые	11 022		11 022	
Мосты	5 329	2 258	3 071	

Таблица 1

$$K_{pc3} = V_{\phi max} / V_{p} \tag{1}$$

По техническому уровню, эксплуатационному состоянию и организации движения автомобильные дороги должны обеспечивать возможность безопасного движения одиночных автомобилей при благоприятных погодных условиях с максимальными скоростями, близкими к расчетным ($K_{pc3} \ge 1$) соответствующей категории, установленной для эксплуатируемой дороги, утвержденной технической документацией. В неблагоприятных погодно-климатических условиях допускается снижение обеспечиваемой максимальной скорости по отношению к расчетной, но не ниже значений, приведенных в табл. 2[6].

Участки с $K_{pc3} - 0,50 \div 0,75$ в неблагоприятные для дорог периоды года требуют усиленного содержания и последующего улучшения, а участки с K_{pc3} до 0,50 подлежат первоочередной перестройке.

Обеспечение непрерывности движения особое значение приобретает в зимний период, когда складываются сложные условия эксплуатации дорог и определены четкие директивные сроки для обеспечения нормальной работы автомобильной дороги в зависимости от установленного уровня содержания данной дороги [7].

Статистика ДТП в настоящее время в Республике Беларусь неутешительна (табл. 2).

Критерии безопасности движения, вместе с тем достаточно четко определены [6]. Состояние безопасности движения на автомобильных дорогах оценивают:

- коэффициентом происшествий И;
- коэффициентом аварийности K_a (для участков дорог в равнинной и холмистой местностях):
- разницей коэффициентов аварийности К₂ (на соседних участках в горной местности);
 - коэффициентом безопасности.

Коэффициент происшествий характеризует число ДТП, приходящееся на 1 млн авт.-км пробега.

Для участка дороги коэффициент происшествий:

$$M = 10^6 A / (365 LN), \tag{2}$$

где A— число ДТП в год; L — длина участка, км; N — среднегодовая суточная интенсивность движения, принимаемая по данным учета движения, авт./сут.

Для коротких участков (пересечения и примыкания в одном уровне, искусственные сооружения, площадки для остановок и стоянок автомобилей, автобусные остановки) коэффициент происшествий равен числу ДТП на 1 млн. автомобилей:

$$U_1 = 10^6 A / (365 N). (3)$$

Для пересечения и примыкания в данном уровне:

$$M_2 = 10^6 A / [365(N_{\rm r.n.} + N_{\rm B.r.})], \tag{4}$$

где $N_{\text{гл,}}$ $N_{\text{вт,}}$ — среднегодовая суточная интенсивность движения на главной и второстепенной дорогах, авт./сут.

Это достаточно четкие критерии оценки безопасности дорожного движения, но они базируются на статистике ДТП, не давая возможности проанализировать объективные причины возникновения дорожно-транспортных происшествий. Оценку причин возникновения ДТП можно проводить по разработанному В. Ф. Бабковым методу итогового коэффициента аварийности К_а [6].

Относительная вероятность ДТП на каждом участке оценивается итоговым коэффициентом аварийности, который вычисляется как произведение частных коэффициентов К₁...К₁₄, характеризующих изменение условий движения по сравнению с эталонным участком.

Изложенный метод оценки условий безопасности движения развил А. П. Васильев, который предложил использовать сезонные коэффициенты аварийности. Это дает возможность разрабатывать мероприятия, которые повышают безопасность движения в конкретный период года с учетом погодно-климатических факторов.

Таблица 2 Количество ДТП и число пострадавших в них за 2001–2004 гг. в Республике Беларусь

Vanagranuaryyya HTH	Годы			
Характеристика ДТП	2001	2002	2003	2004
	Общее количес	тво ДТП		
Всего ДТП, шт.	6327	7204	7194	7218
Погибло, чел.	1594	1728	1764	1688
Ранено, чел.	6401	7472	7361	7522
Количество ДТП на	автомобильных	дорогах обще	го пользования	
Всего ДТП, шт.	2710	3007	3321	3516
Погибло, чел.	997	1129	1239	1251
Ранено, чел.	2804	3148	332	3589

Важным показателем безопасности движения служит плавность изменения скорости автомобиля на снежных участках, которую принято оценивать коэффициентом безопасности K_6 , представляющим собой отношение скорости движения на смежных участках:

$$K_6 = V_{adm} / V_{inf}, (5)$$

где V_{adm} — допустимая скорость движения по условиям безопасности на рассматриваемом участке дороги, км/ч; V_{inf} — скорость, с которой автомобиль приблизился к рассматриваемому участку, км/ч.

Удобство движения по автомобильной дороге можно оценивать по характеристике, предложенной А. П. Васильевым — показателю инженерного обустройства дороги (K_{05}), который определяют по величине коэффициента дефектности соответствия инженерного оборудования и обустройства дороги (Д $_{n,0}$) [4].

$$\Pi_{M} = \Pi_{M1} + \Pi_{M2} + \ldots + \Pi_{M7}.$$
(7)

где $Д_{\pi}$ — частный коэффициент дефектности соответствия, учитывающего количество и частоту расположения площадок отдыха и видовых площадок; $Д_{\text{м1}}... J_{\text{м7}}$ — частные коэффициенты дефектности соответствия элементов инженерного обустройства, функциональное значение которых распространяется на локальный отрезок дороги.

Эти показателя могут быть определены в динамике.

Пропускная способность и уровень загрузки дороги также являются качественными критериями, характеризующими результативность работы дорожно-транспортной системы.

Уровень загрузки (удобства движения) дороги движением Z определяют как отношение фактической интенсивности, приведенной к легковому автомобилю (N, авт./ч), к пропускной способности (P, авт./ч).

Пропускная способность автомобильной дороги определяется по зависимости

$$P = \psi \alpha V_{cB}, q_{max}, \tag{8}$$

где ψ — коэффициент, учитывающий движение по встречной полосе (или по соседней для многополосных автомобильных дорог); α — коэффициент, зависящий от дорожных и метеорологических условий; q_{\max} — максимальная плотность потока, авт/км; $V_{\text{св}}$ — средняя скорость транспортного потока, км/ч.

$$V_{\rm cs} = \sum V i / n \,, \tag{9}$$

где Vi — мгновенная скорость автомобиля, км/ч; n — число автомобилей, для которых измерены скорости.

В условиях тенденции современного автомобилестроения к росту скоростей движения, осевых нагрузок и общей грузоподъемности транспортных средств следует особое внимание обратить на обеспеченность пропуска автомобилей и автопоездов с разрешенными для движения осевыми нагрузками и габаритами.

В соответствии с Европейскими стандартами магистральные дороги должны обеспечивать пропуск транспортных средств с нагрузкой на одиночную ось — 11,5 т. Протяженность таких участков дорог в Республике Беларусь по состоянию на 01.01.2006 г. составила около 800 км, или 5,2% от общего протяжения республиканских дорог, что явно недостаточно.

В нашей стране для республиканских автомобильных дорог используется система управления транспортно-эксплуатационным состоянием автомобильных дорог «Ремонт», разработанная в РУП «Белорусский дорожный инженернотехнический центр».

Не все данные равнозначны для системы управления. Американское общество по испытаниям и материалам (ASTM) рекомендует определенную приоритетность использования данных при разработке PMS.

В табл. 3 указаны пять видов данных, имеющих приоритет номер один, необходимых даже для наиболее элементарных систем управления качеством покрытий.

В соответствии с установленными приоритетами современную систему мониторинга дорожно-транспортного комплекса следует развивать по трем основным направлениям:

- мониторинг технических параметров автомобильных дорог и состояния покрытия;
 - мониторинг транспортного потока;
 - мониторинг состояния окружающей среды.

Установление геометрических характеристик и идентификация функционального класса автомобильных дорог осуществляется на стадии инвентаризации.

Установление геометрических характеристик и идентификация функционального класса автомобильных дорог осуществляется на стадии инвентаризации.

Мониторинг состояния покрытия ведется как в ходе систематического контроля качества содержания автомобильных дорог, так и приборного контроля специализированными диагностическими лабораториями.

Приоритетность сбора и использования данных

Данные	Приоритетность	
Геометрические характеристики	1	-
Конструкция дорожной одежды и земляного полотна	5	
Данные о строительстве и ремонтах	2	
Данные об административном делении	9	
Данные по водоотводу	4	
Функциональная классификация	1	
Состояние покрытия		
Дефекты	1	70
Ровность	3	é
Коэффициент сцепления, текстура покрытия	11	
Прочность .	6	
Свойства материалов слоев	8	78
Состояние водоотвода	4	
Движение транспорта		
Интенсивность	1	
Состав потока	1	- m 3
Осевые нагрузки	7	
дтп	10	1 8
Окружающая среда		
Количество циклов замерзания/оттаивания	11	. 1
Количество осадков	11	- 17
Данные о солнечной радиации	11	-
Диапазон температур дорожного покрытия	11	¥.
Стоимость		
Строительства	2	
Ремонтных работ	2	
Издержек пользователей дорог	3	

Оценка состояния покрытия осуществляется несколькими способами:

- 1) сравнение каждого показателя с нормативными значениями;
- 2) качественная оценка состояния покрытия по каждому параметру;
- 3) оценка покрытия по обобщенному показателю.

Требования к состоянию покрытия, находящегося в эксплуатации и к вновь построенному или отремонтированному, различаются. Это естественно, так как дороги строятся с некоторым запасом надежности в расчете на длительную эксплуатацию. Системы управления используют при оценке состояния тре-

бования к покрытиям, находящимся в эксплуатации.

Технические показатели качества содержания автомобильных дорог могут служить критериями мониторинга всех процессов, происходящих в дорожно-эксплуатационной организации, так как конечной целью деятельности дорожных организаций по ремонту и содержанию автомобильных дорог является поддержание и своевременное повышение их потребительских свойств.

Перечисленные в статье критерии качества автомобильных дорог по А. П. Васильеву [4] могут быть отнесены к группе инженерных критериев качества автомобильных дорог. Вместе с тем

учитывая социальную и экономическую значимость безопасности дорожного движения, показатели безопасности правомерно рассматривать как социальные и экономические критерии качества автомобильных дорог.

Критерии оценки качества автомобильных дорог по целому ряду позиций совпадают с параметрами, которые контролируются для установления состояния автомобильных дорог и прогнозирования их работоспособности.

Вместе с тем критерии качества автомобильных дорог должны выполнять функцию показателей эффективности деятельности дорожностроительных, дорожно-ремонтных и дорожно-эксплуатационных организаций.

Критерии качества автомобильных дорог должны отражать экономическую, финансовую, организационную и социальную эффективность и экологическую безопасность функционирования автомобильных дорог как элемента транспортной инфраструктуры. Кроме того, критерии качества автомобильных дорог, конечно, должны включать в себя инженерные показатели, получаемые при мониторинге сооружений.

Таким образом, понятие критериев качества автомобильных дорог шире понятия характеристик автомобильных дорог, получаемых при мониторинге с целью диагностики и про-

гнозирования их технико-эксплуатационного состояния.

Литература

- 1. Интернет-сайт Министерства транспорта и коммуникаций Республики Беларусь. http://www.mintrans.by.
- 2. Хлыстун Л. // СБ Беларусь сегодня. 2006. № 10 (22420).
- 3. Государственная программа развития международных автомобильных перевозок пассажиров и грузов на 2003—2008 годы.
- 4. Васильев А.П. Целевые показатели оценки результативности модернизации, ремонта и содержания автомобильных дорог // Наука и техника в дорожной отрасли. -2005.- № 1.- С. 5-8.
 - СНиП 2.05.02-85. Автомобильные дороги.
- 6. Кашевская Е. В. Эксплуатация автомобильных дорог: Учеб. пособие Мн.: Дизайн ПРО, 2002. 160 с.
- 7. РД 0219.1.18-2000 Зимнее содержание автомобильных дорог общего пользования Республики Беларусь.
- 8. Диагностика и управление качеством автомобильных дорог: Учеб. пособие / И. И. Леонович, С. В. Богданович, В. В. Голубев и др.; Под ред. И. И. Леоновича. Мн.: БНТУ, 2002. 357 с.