

Scanned by TapScanner

СОДЕРЖАНИЕ

Передовая — Выборы в Верховные Советы союзных и шито-	
Передовая — высоры в верховные советь	1
M F 2 ROOMER HODOROVTHUR DISHNTUS ACCIDIO MOGANICE	4
охранной зоны в третьем пятилетии	1
охранной зоны в третьем пятилетии . А. Дернов — Выра- Проф. д-р селхоз. наук В. В. Гуман и С. А. Дернов — Выра-	10
Проф. д-р селхоз. наук Б. б. гулан интериала	10
В П Паколкало — Очерелные залачи химического астона	21
A ANA THE WACHLENN HACHLENN HACHLENN	
И Л Белановский — Основные задачи биологических методов	00
SODIELL C DOGTITIONIE JECHLEMIE HUCKOMBIMIE	26
Г. И. Коротких — Применение самолета для борьбы с вред-	
1. И. Коротких — применение самонета для сорьение	-32
ными лесными насекомыми	
А И И ть инский — О предстоящей вспышке массового размно-	34
жания сосновой пяленины и сосновои совки	0.4
А. Л. Щербин - Парфененко — Голландская болезыь и меры	
борьбы с нею	41
оорьоы с нею	
С. Я. Лапиров-Скобло — Влияние подсочки на технические	47
свойства древесины	11.19

И. М. Ткачев — Осушение болот в лесах водоохранной зоны. . . 57

новости науки и техники

Взаимное влияние растений					,	×.			61
Теория гормонального развития растений		*	*	e				*	00
Цветение растений в результате прививок .	•		4			*	18	*	02
Применение ростовых веществ при черенкован	иии	*		 		*	*		

хроника

БИБЛИОГРАФИЯ

Scanned by TapScanner

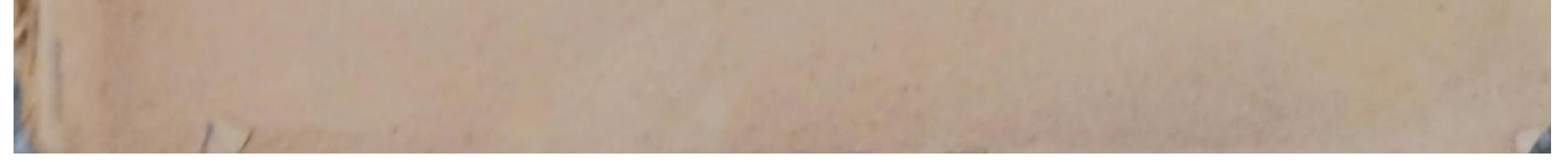
Cmp_

ВЗАЩИТУ ЛЕСОНАСАЖДЕНИЯ ПРИ СИК СССР

АДРЕС РЕДАКЦИИ: Москва, 12, ул. Куйбышева, 1 (уг. Краской прошеря). Тел. К. 5-91-99

ВЫБОРЫ В ВЕРХОВНЫЕ СОВЕТЫ СОЮЗНЫХ И АВТОНОМНЫХ РЕСПУБЛИК

THE MERINANCE SEPTERSONN MAILER BE-MANNER SAME TO PARTY PARTY PARTY CONTRACTOR HARRING WARDERS WARDENNY BACS KAMISANNY the malenyane menyration a Bepromise Co-REFERENCE CONTRACTORSCICK ST. DECKYORISS. 15 HAMME - 12, 24 14 26 - TOY AMILLARCH CLARTHARZ GREENING MARK ENDERLY & HEADING TERMANNA YOMAM, (MAR CHANKS ON LYT TOMO-COMPANY WAR WAR MAN MANY METHODAL OF COMPANY CHEWER MERCHANY MARTING IN CHECKING THINKS They The, STRATH, RECENCER & KARALING CONSTRANCE PARTY ORNALINA, WHE COMMENCE & WHERE BOTHER, ONTRACT THYS BEEN MANNESS CODANNA-CINA MARY MINING MATCHING & MOSTYNER CANSARMETHworking population. Mepymana cramme CHAR REPARTS WRENTS, THOM SHRMEMEN этой заружила мародыя СССР востроили ELANDARICT MARCHAR CANDECTED, COBRANK CHARD KYRLEYPY, MANHONSAMMYND 119 (2007-MR, CLASHRANCTHRECKYM IN CORETHREND, Народыя СССР Объединеныя в единое CONTRACT CONSUMERSION TORY MADE TORY MADE THE рагиних и крестьян на началах равен-CINA & MANNAMORTH, CORETCHNA CO-W73 - EMMETREMMENTS & MMDE CTDAMA, THE под оуконолаством партии Ленина-CAMMAR (MONTRALING) AMMERICANS MANAMMER MERINASINE MERINY MEDDIZMIN, MARCH MARD AMMARTER CHERNIMLEM MORON HEMPMONDALISH REAMLON CHAPTERHORTH CO-BATCHOFO HALYONS BONDYT BADTHN JICHNHS-Сладина, его месокрушимого морально-THORNYN MERCHARG MANNETRA THOR MARKENEM Сталинской Конституции.


раз сопоставляют бурный расшвет народного хозяйства, неуклонный рост благосостояния масс в СССР с безработицей, нишетой, голодом и беспошадной эксплоатацией в странах капитала. С каждым днем, с каждым месяцем все более зажиточной и культурной становится жизнь в нашей стране. Солнце социализма сияет над нашей родиной. Дваящать лет неутомимой борьбы, две сталинские пятилетки созидательного, героического труда превратили ее изстраны убогой, бессильной и нишей, какой была царская Россия, из страны, которая являлась тюрьмой народов, в шветущий плодоносный сад СССР - государство, где две силы - народ и коммунизм - соединились воедино. Неустанно укрепляя могущество своей социалистической родины, советский народ изо дня в день множит успехи социализма, ширит ряды стахановского движения в городе и деревне, добивается выполнения и перевыполнения хозяйственных планов. В то время как в странах капитализма десятки миллионов людей лишены элементарных гражданских прав, на советской земле расшветает подлинное всенародное творчество во всех областях человеческой деятельности.

Подлетарии всех стран, соединяйтесь!

Nº 5-MAN 1938

Трудящиеся всего мира еще и еще

Гордо над Советской землей реет знамя Социалистической Конституции, на страницах которой победивший народ рукой гениального Сталина начертал великие законы равноправия наций, за-


Scanned by TapScanner

Выборы в Верховные Советы союзных и автономных распублик

писал добытые в жистоких схватках с врагами права на труд, отдых, образование. Сталинская Конституция — великая хартия торжествующего социализма, являющаяся вместе с тем грозным обнинительным актом против кровавых преступлений фашизма и всех его пособников.

Согласно статье 16 Конституции ккаждая Союзная республика свою Конституцию, учитывающую эенности республик и построенную юлном соответствии с Конституцией ССР». Статья 57 Сталинской Конститущии СССР гласит: «Высшим органом государственной власти Союзной республики является Верховный Совет Союзной Республики». В жизни народов нашей великой страны осуществляется одно из самых основных прав, закрепленных Сталинской Конституцией, право избирать верховные органы власти союзных и автономных республик. Каждый гражданин СССР независимо от пола, национальности, социального происхождения, имущественного положения и прошлой деятельности будет участвовать в выборах депутатов в Верховные Советы. Партия и советская власть делают все для того, чтобы каждый избиратель мог осуществить свое избирательное право. Выборная кампания имеет первостепенное политическое значение. Во время выборов в Верховный Совет СССР мы накопили огромный опыт работы в массах. Выросли воспитанные партией новые крепкие кадры партийных и непартийных пропагандистов, агитаторов и организаторов, политически зрелых и практически подготовленных. Это обязывает партийные и советские организации провести кампанию по выборам в Верховные Советы союзных и автономных республик еще лучше, еще более организованно, чем выборы в Верховный Совет СССР, еще сильнее сплотить народы. Советской земли вокруг нашей большевистской партии. Выборы в Верховный Совет СССР закончились блестящей победой блока коммунистов и беспартийных. Все 1 143 кандидата, выдвинутые этим блоком, были избраны в депутаты Верховного Совета СССР. 96,8% всех избирателей приняли участие в выборах. 98,6% из-

бирателей, участвовавших в выборах 90 миллионов равноправного населения Советского Союза отдали свои годоса за кандидатов блока коммунистов и беспартийных. Эта победа неразрывно связана с деятельностью большевистских агитаторов и пропагандистов, работающих на избирательных участках. Наша агитация не должна ослабевать ни на минуту. Охватив большевистской агитацией избирателей, мы обеспечим новую блестящую победу блока коммунистов и беспартийных на выборах. Слова большевистской правды должны звучать в рабочих и колхозных квартирах, в общежитиях строителей, среди лесорубов и лесохозяйственных рабочих, кустарей и домашних хозяек и работниц. Агитировать — значит быть неразрывно связанными с массами. «Связь с массами, укрепление этой связи, готовность прислушиваться к голосу масс — вот в чем сила и непобедимость большевистского руководства». Это указание товарища Сталина надо осуществлять на всех этапах избирательной кампании. Священная обязанность каждого партийного и непартийного большевика — обеспечить стопроцентное участие всех избирателей в выборах в Верховные Советы. Для этого нужно широко разъяснять населению Конституцию СССР и Конституции союзных республик, а также избирательные законы, по которым будут проходить. республиканские выборы. Готовясь к выборам в Верховные Советы союзных и автономных республик, ни на минуту нельзя забывать о капиталистическом окружении. Судебный процесс антисоветского «право-троцкистского блока» еще раз чрезвычайно отчетливо показал трудящимся звериный облик врага, коварного и злобного, неимоверно подлого в своей бессильной ярости. Охвостье право-троцкистских мерзавцев попытается всячески вредить. большевистскому проведению выборов. Надо всемерно повысить бдительность. Каждый честный пражданин должен уметь распознавать врагов народа. Вражеская свора фашистских наемниковтроцкистов, бухаринцев, буржуазных националистов сметена с лица советской земли, и не уйти от заслуженного возмездия ни единому из их гнусных.

Scanned by TapScanner

Выборы в Верховные Советы союзных и автономных республия

последыщей, в какие бы щели они ни прятались. Ни одному врагу народа не будет житья на советской земле.

Партия Ленина-Сталина воспитала миллионы партийных и беспартийных большевиков, государственных деятелей ленинского типа, беспощадных к врагам народа. Выбрать из них наиболее достойных — центральная задача избирательной кампании. Эти посланники народа обеспечат дальнейший расцвет счастливой и культурной жизни трудящихся, еще больше укрепят могущество великой социалистической державы. На предстоящих выборах с новой силой будет продемонстрирована победа сталинского блока коммунистов и беспартийных, торжество Сталинской Конституции.

Начавшаяся в стране избирательная кампания по выборам в Верховные Советы союзных и автономных республик сопровождается невиданным производственным и политическим подъемом

передовиков и оказать им конкретную помощь. Боевая задача — множить ряды стахановцев в лесном хозяйстве, охватить соцсоревнованием всех лесных рабочих. Ознаменуем выборы в Верховные Советы союзных республик быстрой и энергичной ликвидацией последствий вредительства в лесном хозяйстве. Мы зовем всех трудящихся в области лесного хозяйства активно включиться в подготовку к предстоящим выборам в союзные и республиканские Верховные Советы. Мы призываем каждого принять самое деятельное участие в большой разъяснительной работе, которую надо вести. Мы призываем каждого активно участвовать в выборах, голосовать за кандидатов блока коммунистов и беспартийных, за лучших сынов народа, до конца преданных делу Ленина-Сталина, за доблестных пламенных патриотов родины, непоколебимых борцов за счастье рабочих и крестьян, за коммунизм. День выборов в Верховный Совет СССР стал днем всенародного праздника в нашей стране. Дни выборов в Верховные Советы союзных и автономных народными республик также будут праздниками, праздниками побед социализма, побед ленинско-сталинской национальной политики. Избиратели все как один пойдут к урнам с лозун эм сталинского Центрального комитета Всесоюзной коммунистической партии (большевиков): Да здравствует блок коммунистов и беспартийных!

масс. Производственными победами готовится встретить страна выборы в Верховные Советы союзных республик. Социалистическое соревнование и стахановское движение творят чудеса и в промышленности и в сельском хозяйстве. Самым отсталым участком в этом отношении является лесное хозяйство. Мы должны направить активность масс на борьбу за образцовое проведение лесокультурных работ, на повышение производительности труда в лесном хозяйстве. Надо возглавить инициативу

> Да здравствует блок коммунистов и беспартийных в предстоящих выборах Верховных Советов союзных и автономных республик!

> > (Из лозунгов к 1 мая 1938 г.)

Scanned by TapScanner

ПЕРСПЕКТИВЫ РАЗВИТИЯ ЛЕСНОГО ХОЗЯЙСТВА ВОДООХРАННОЙ ЗОНЫ В ТРЕТЬЕМ ПЯТИЛЕТИИ*

М. Г. ЗДОРИК

План третьего пятилетия по лесному хояйству Главного управления лесоохраны и лесонасаждений еще не проработан, и мы в настоящей статье излагаем наши соображения о перспективах развития лесного хозяйства водоохранной зоны. Соображения эти построены на основании анализа планов Главлесосхраны за 2 года (1937-1938), изучения состояния его аппарата в центре и на местах, а также данных о состоянии лесного фонда.

Выполнение плана 1937 г. явилось своего рода экзаменом для Главлесоохраны. По уточненным показателям план этот представляется в следующем виде: лесоустройство — на площади 6,4 млн. га, составление плана рубок — 37,7 млн. га, уход за насаждениями — 1 млн. га (на долю санитарных рубок приходится 434 тыс га), посев леса — 51 тыс. га, посадка леса — 111 тыс. га, закладка новых питомников — 2944 га и заготовка древесных семян хвойных-499 т и лиственных-25 т. На все эти мероприятия и сопутствующие им работы (подготовка почвы, огораживание культур, уход за лесокультурами и т. п.) было ассигновано 187 млн. руб.; кроме того, на борьбу с лесными пожарами — 7,3 млн. руб. и на борьбу с вредными насекомыми — 3,1 млн. руб., а всего 197,4 млн. руб., что составляет 4 руб. на 1 га покрытой лесом площади. Такие размеры ассигновании являются исключительными в истории лесного хозяйства. Так, например, в 1913 г., в самый расцвет лесного хозяйства царской России, было израсходовано на лесохозяйственные мероприятия казенных лесов всего около 2,7 коп. на 1 га удобной лесной площади, т. е. в 148 раз меньше, чем в 1937 г. По объему работ 1937 г. сравнительно с 1913 г. дает следующие превышения (табл. 1). Таким образом, если до начала второго пятилетия при оценке наших достижений мы могли еще сравнивать их с объемом работ 1913 г., то в настоя-

2	10	л	H	11	a 1
		~	**	-	a)

Наименование	1913 г.	1937 r.	B % or
мероприятий	(в тыс. га)	(B TMC. ra)	1913 r.
Лесоустройство Посев леса Посадка леса Уход за лесом Подготовка почвы для культур	2 693,9 29,1 40,0 109,5 16,1	6 361,1 67,3 85,2 455,7 176,5	

щее время лесное хозяйство довоенного времени представляется уже сильно отсталым и совершенно несравнимым с нашим социалистическим лесным хозяйством.

* В порядке обсуждения. Ред.

Перейдем теперь к выполнению и оценке плана 1937 г. Отпуск леса в 1937 г. выразился в 83,7 млн. м³. Сопоставляя его с размерами лесозаготовок на территории водоохранной зоны до издания закона от 2 июля 1936 г. (около 120 млн. м³ в год), отмечаем, что напряженность лесного фонда с изданием закона снизилась на 43%; если же взять только главное пользование, то размер его приблизился к среднему годичному приросту.

Напряженность лесного фонда водоохранной зоны уменьшилась еще и потому, что вдоль берегов Волги, Дона, Днепра и верховьев Западной Двины на площади в 11 млн. га, где ранее главным образом были сосредоточены лесозаготовки, рубка леса вовсе воспрещена под страхом уголовной ответственности, а в эксплоатационной части лесосеки распределены более или менее равномерно по всей территории лесных дач.

Согласно постановлению ЦИК и СНК СССР от 2 июля 1936 г. Главлесоохраной был составлен пятилетний план рубок на всю площадь эксплоатационной части водоохранной зоны, т. е. на 37,7 млн. га. По этому плану на 1938-1942 гг. намечалось по главной рубке 384 млн. м³, или в среднем по 77 млн. м² ежегодно. Средний же годичный при-

Scanned by TapScanner

рост для эксплоатационной части водоохранной зоны Главлесоохраной определен в 65,4 млн. м³. Следовательно, план составлен с превышением среднего размера годичного пользования над средним годичным приростом на 19,5%. По мерам ухода за лесом (прочистки, прореживания, проходные и санитарные рубки) проектировалось на 5 лет 143 млн. м³, или 28,6 млн. м³ ежегодно, а всего лесопользование определилось по 105,6 млн. м³ ежегодно, что превышает средний годичный прирост на 64%.

Таким образом, в течение всего третьего пятилетия план устанавливает отрицательный баланс древесины в размере 41,1 млн. м³ ежегодно, что совершенно недопустимо. При правильном ведении лесного хозяйства баланс древесины, т. е. разница между приростом и лесопользованием, должен равняться нулю; в то же время вследствие мер ухода за лесом и связанного с ними увеличения среднего годичного прироста лесопользование должно возрастать. Перед Главным управлением лесоохраны и лесонасаждений выдвигается задача омолодить свои леса путем форсирования рубок перестойных насаждений; однако пятилетний план рубок Главлесоохраны этого не предусматривает, оставляя ежегодный размер рубок стабильным (не свыше 105,6 млн. м³). Между тем распределение насаждений по классам возраста в эксплоатационной части водоохранной зоны позволяет увеличить размер главного пользования, как это видно из данных табл. 2.

51,4% от всей их площади, а лиственные — 33,7%. При таком распределении насаждений по группам возрастов можно было бы ускорить темп рубок. Можно все насаждения эксплоатационной части водоохранной зоны разбить на две группы: 1) с избытком спелых насаждений и 2) без избытка спелых насаждений. В первой группе срок использования всех спелых и перестойных насаждений для хвойных определить в 30 лет и для лиственных в 15 лет. Для второй группы размер отпуска принять в пределах среднего годичного прироста. По фактическим запасам спелых и перестойных насаждений объем лесозаготовок в Свердловской, Кировской и Горьковской областях, а также в Башкирской АССР должен составить 56,8% от всего их объема в водоохранной зоне.

По всей эксплоатационной части водоохранной зоны без всякого ущерба для водоохранного значения лесов можно размер главного пользования приисчислениям, нашим НЯТЬ, ПО B

Таблица 2

-		Размер пользования в тыс. га				
	Классы возраста	хвой- лист- ные венные всего				
I II III IV	всего	2 519,6 2 973,8 2 973,8 2 628,8 5 602,6 4 089,8 5 602,6 4 1425,8 8 766,2 4 140,2 12 906,4 17 030,6 12 284,6 29 315,2				

Таким образом, спелые и перестойные хвойные насаждения составляют

106 млн. м³ против 77 млн. м³, намеченных Главлесоохраной по плану рубок. Если к главному пользованию добавить еще древесину, получаемую в порядке мер ухода за лесом и санитарных рубок, в размере, исчисляемом Главлесоохраной в среднем около 28 млн. м³ в год, то общий размер главного и промежуточного пользований определится те 134 млн. м^{3 *}.

В 1937 г. осталась еще не изжитои старая тенденция размещения лесозаготовок в местах, наиболее доступных: по областям с избытком спелых насаждений заготовлено только 60,1% всеобъема продукции лесозаготовок го в эксплоатационной части водоохранной зоны, тогда как фактическое состояние лесонасаждений позволяло довести размер лесозаготовок почти до 78%.

В запретных полосах водоохранной зоны допускаются только рубки в порядке мер ухода за лесом и санитарные. Очевидно, законодатель имел здесь в виду не допускать сплошного оголе-

* В 1935 г. на территории водоохранной зоны было заготовлено в порядке главного пользования 116,45 млн. м^а. Рубки ухода за лесом в то время производились в незначительных размерах.

Scanned by TapScanner

М. Г. Здорик

ния лесных почв в целях сохранения водоохранного значения леса. Но эта цель может быть достигнута и при пе сплошных рубках, если вести их концентрированно, а разбросанно, небольшими площадками¹. Преимущество таких рубок перед рубками в порядке мер ухода за лесом в том, что они допускают возможность вместо существующих древесных пород создать новые, быстро растущие и в таком составе, который будет увеличивать водоохранное значение леса. В то же время мы в более короткий срок сможем заменить перестойный лес молодым. Участков леса с избытком спелых и перестойных насаждений мы имеем в запретной полосе более 4 млн. га. Следовательно, в запретной полосе, при условии организации культурного лесного хозяйства и без ослабления водоохранного значения леса, мы можем увеличить размер годичного главного пользования примерно на 22 млн. м³ и от рубок ухода за лесом на 5-8 млн. м³, а всего на 30 млн. м³. В итоге общий размер лесопользования по водоохранной зоне может быть доведен до 164 млн. м³ в год. Перед Главлесоохраной и лесозаготовительными организациями, работающими на территории водоохранной зоны, встает довольно трудная, но вполне разрешимая задача — совместно составить план эксплоатации лесных массивов с избытком спелых и перестойных

насаждений. Как ни трудно освоить такие массивы, как, например, в Свердловской области, но все же это легче, чем освоение лесов Восточной Сибири, Печоры и т. п.

Пока же на 1937 г. и даже 1938 г. ле. созаготовки географически распределе. ны неправильно: в массивах с избытком спелых и перестойных насаждений, как например по Свердловской области и Башкирской АССР с площадью, покрытой лесом, в 10880,5 тыс. га (37,2% от всей эксплоатационной части) было назначено в рубку на 1937 г. в среднем по 1,6 м³ с 1 га лесопокрытой площади; в 13 областях со средней лесистостьюот 3 до 4 м³ с 1 га; по Калининской, Ивановской, Горьковской и Саратовской — от 4 до 5 м³ и в таких малолесных областях, как Курская и Воронежская, лесопользование намечено от 5 до 6 м³ с 1 га их лесопокрытой площади. При составлении плана третьего пятилетия по водоохранной зоне необходимо учесть отмеченные выше недо-

6

¹ В Боржоме автору приходилось видеть куртинные сплошные рубки в хвойных насаждениях на довольно крутых склонах гор. Размыва почв не наблюдалось. Возобновление идет превосходно. статки географического размещения лесозаготовок и передвинуть значительную часть их на северо-восток в Кировскую, Свердловскую области и левобережную часть Горьковской области.

Рассмотрим основные мероприятия по лесному хозяйству.

Лесоустройство. Изученность лесов водоохранной зоны представляется на 1 января 1937 г. в следующем виде (табл. 3).

Таким образом, несмотря на интенсивность хозяйства водоохранной зоны и освоенность еелесов, все же мы имеем

Таблица З

Части водоохранной зоны	Общая площадь лесов в тыс. га	Устроено тыс. га	Обследова- но тыс. га	Всего изучено тыс. га	Осталось неизучен- ных тыс. га
Запретная	16 185,1	11 966,1	2 121,1	14087,2	2 097,9
Эксплоатационная	37 981,2	33 080,7	2 424,0	35 504,7	2 476,5
Итого	54 166,3	45 046,8	4 545,1	49 591,9	4 574,4
B %	100,0	83,2	8,4	91,6	8,4

Scanned by TapScanner

Перспективы развития лесного хозяйства водоохранной зоны в третьем пятилетии

8,4% лесного фонда совершенно неизученных. Из всей неизученной площади лесов приходится на долю Кировской области 1084,7 тыс. га, Свердловской — 969 тыс. га и Башкирской АССР—1135,8 тыс. га, или суммарно 3189,5 тыс. га, что составит 69,9% от всей неизученной площади лесов водоохранной зоны.

Мы не имеем данных о распределении устроенных лесов по степени давности проведенного в них устройства. Не впадая в грубую ошибку, можно полагать, что большая часть устроенных лесов требует дальнейших лесоустроительных работ, так как рубка леса в них во многих случаях не сопровождалась внесением коррективов в планы лесонасаждений, и таксационные описания к ним не соответствуют действительности и подлежат исправлению в порядке ревизии лесоустройства.

Планом 1937 г. намечалось устроить всего 6361,1 тыс. га. Фактически устросно 6 350 тыс. га, или 99,8%; устройство производилось главным образом, в запретной полосе. Что касается метода лесоустройства, то он остается старым: единицей лесоустройства является лесхоз; таксация насаждений производится по параллельным визирам глазомерно; объяснительная ваписка к таксационному описанию и так называемый план хозяйства также составляются по-старинке. Ничего нового Главлесоохрана не внесла в лесоустройство и как будто не собирается вносить, по крайней мере на 1938 г. все осталось по-старому. Одним словом, проф. М. М. Орлов умер, но дух его реет над Главлесоохраной. Нам кажется, что прежде чем затрачивать десятки миллионов народных денег на устройство лесов или, правильнее сказать, на его повторение, Главлесоохране следовало бы поставить себе вопрос: как надо организовать лесное хозяйство в водоохранной зоне, чтобы выполнить директивы правительства от 2 июля 1936 г. В зависимости от ответа на этот вопрос будет определяться и характер лесоустройства.

древесиной из лесов водоохранной зоны. Правильная организация лесного хозяйства и составление генерального плана по всем лесохозяйственным мероприятиям являются здесь первоочередной задачей. Об организации лесного хозяйства в водоохранной зоне мы уже высказывались в №2 нашего журнала за 1937 г. В первую очередь нам необходимо произвести комплексное обследование всех лесов водоохранной зоны максимум в 2-3 года. Старые методы обследования на-глазок, без строгого научного обоснования, совершенно должны быть отброшены. Необходимо для разрешения вопроса о районировании территории применить выборочный статистический метод, по возможности на базе аэрофотосъемочных работ. На основании собранного материала можно будет установить районы и составить генеральный план лесного хозяйства. Чем больше мы будем откладывать разрешение этого вопроса, тем больше сделаем ошибок в организации лесного хозяйства, тем больше непроизводительно израсходуем народных денег на лесоустройство, посев и посадку леса и т. п. Перейдем к лесокультурным мероприятиям и остановимся только на основных: посеве и посадке леса, так как все остальные являются лишь производными от них. Лесокультурные работы являются из всех лесохозяйственных мероприятий наиболее трудным делом, и ошибки при проведении культур леса трудно исправимы. Современный лесовод должен строить свое лесоводственное миросозерцание не на идеалистическом учении проф. Морозова, а на основе материалистической диалектики Маркса-Энгельса-Ленина-Сталина. Наша задача изучать природу леса, но изучать ее надо не для того, чтобы пассивно подчиняться ей, а для того, чтобы изменять ее. Влияние учения Г. Ф. Морозова и в настоящее время в области лесокультурной политики все еще продолжает ощущаться. Если мы возьмем планы лесокультурных работ Главлесоохраны на 1937 и 1938 гг., то в них мы найдем лишь случайное, шаблонное, ничем не обоснованное распределение лесокультурных площадей по областям. Никаких намеков в этих

Не надо забывать, что на территории водоохранной зоны помещается большинство лесопильных заводов, бумажных и фанерных фабрик, питающихся

Scanned by TapScanner

М. Г. Здорик

планах на организацию лесокультурного дела в направлении создания новых типов леса, наиболее отвечающих водоохранным задачам, мы не обнаружим. Господствуют пока старые методы: пустыри стараются облесить породами, завоевавшими себе место в данном массиве в течение многих веков, без учета потребностей нашего социалистического хозяйства в древесине определенных качеств и без учета необходимости скорейшего воспроизводства древесины. План лесокультурных работ Главлесоохраны до настоящего времени не имеет собой технико-экономического под обоснования, не увязан с перспективными планами лесной промышленности и всего нашего народного хозяйства.

Необходимо при проектировании типов лесных культур для водоохранной зоны сочетать сохранение и усиление роли леса как водоохранного фактора с скорейшим воспроизводством древесины и максимальным удовлетворением потребности народного хозяйства в древесине необходимых качеств. Перейдем теперь к анализу лесокультурных работ во втором пятилетии на территории водоохранной зоны. До образования Главного управления лесоохраны и лесонасаждений при СНК СССР территория водоохранной зоны находилась в ведении Наркомлеса, ЦОЛеса, НКПС, Союзлеспромтяжа, Главлесупра Наркомзема СССР и Управления лесами местного значения Наркомзема РСФСР. Лесокультурные работы производились главным образом на территории водоохранной зоны. Приводимые по этому вопросу данные недостаточно точны, но динамика работ может быть выявлена вполне удовлетворительно. Планом второго пятилетия 1 предполагалось вдоль берегов рек бассейнов Волги, Днепра и Дона произвести искусственные лесонасаждения в 1937 г.-167,3 тыс. га против 42,7 тыс. га в 1933 г., а за все второе пятилетие искусственное облесение в бывшей лесокультурной воне СССР предполагалось произвести на площади 476,1 тыс. га. По отчетным данным за второе пятилетие, план выполнен только на 65,7%. Лесные органы до 1936 г.

находились в ведении различных наркоматов, не имели своих финансовых отделов и получали на лесокультурные работы небольшие средства, которые притом постоянно урезывались. Только с образованием Главного управления лесоохраны и лесонасаждений площадь лесокультурных работ возрастает в 3,5 раза по сравнению с площадью 1932 г.

Интересно выяснить, каково же качаство произведенных культур. Пока мы располагаем материалами обследования в 1936 г. культур последнего десятилетия по УССР, Воронежской области, Курской, Куйбышевской, Оренбургской, Саратовской, Сталинградской и Татарской АССР, всего на площади 195419 га, в том числе лиственных 113340 га, хвойных 63168 га и хвойно-лиственных 18911 га. Эта площадь вполне достаточна, чтобы судить о качестве наших культур вообще, тем более что обследованные площади относятся к различным почвенным и климатическим условиям.

8

1 Второй пятилетний план развития народного хозяйства СССР, т. І, стр. 166. В табл. 4 (стр. 9) мы приводим итоговые данные по всем перечисленным выше областям.

Из приведенных данных видно, что для всех пород посев дает лучшие результаты, чем посадка. Хвойные породы разводятся исключительно посадкой (99%), тогда как лиственные — почти в равных долях посадкой (57,5%) и посевом (42,5%). Процент плохих и погибших культур колеблется в пределах от 26 до 31 по посадке и от 6 до 58 по посеву.

В перечисленных выше областях и республиках на долю хвойных пород падает всего 32,4% обследованной площади культур, на долю лиственных — 58% и хвойно-лиственных—9,6%. В общем, культур посадочного происхождения оказалось 75% и посевного—25%. Средний процент отпада исследователями исчислен для лиственных 25, хвойных—26 и хвойно-лиственных—23.

Из всех обследованных не покрытых лесом площадей в 354,2 тыс. га на долю лесосек приходится 25%, а на прочие категории безлесных площадей—75%. Из 88,3 тыс. га лесосек облесилось неудовлетворительно 41% и вовсе не облесилось 59%.

Приведенный выше краткий анализ

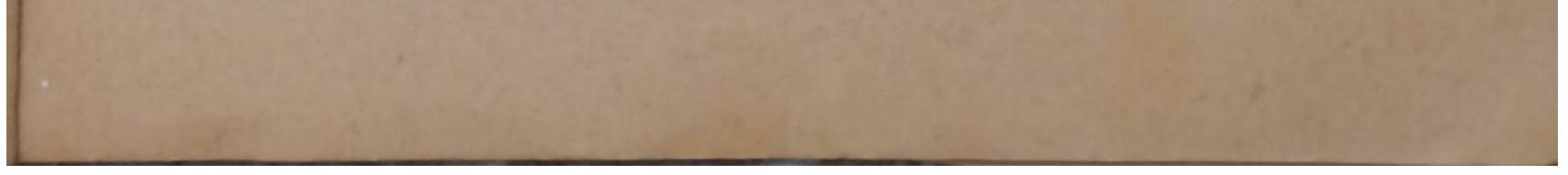
Scanned by TapScanner

Перспективы развития лесного козяйства водоохранной зоны в третьем пятилетия

Таблица 4

9

	Результаты посадки			Результаты посева			Результаты посадан			
Состав культур	хорошие	удовлетво- рительные	плохие и погибшие	хорошие	удовлетво- рительные	плохие и погибшие	Hroro			
Лиственные:		31 575	16 587	14668	22 410 47	11 287 23	113 340 100			
в га	A REAL PROPERTY OF LEASE	48	26 17 734	30 180	237	114	63 168 100			
в га	19 782 32	25 121 40	28	34 319	45 558	21 58	18 91			
Хвойно-лиственные: в га	00	7 278 40	5 505 31	34	60	6	100			
Всего в га	11 769	63 974	39 826	15 187 30	23 205 47	11 459 23	150 41.			
Всего в %	28	44	28	30						


результатов обследования культур и необлесившихся вырубок и пустырей должен быть принят во внимание при перспективном проектировании лесокуль-

Намечаемый размер лесокультурных работ на территории водоохранной зоны на третье пятилетие является вполне реальным и выполнимым, хотя превышает размер культур второго пятилетия на той же территории в 5,5 раза. Само собой разумеется, что типы лесонасаждений водоохранной зоны должны быть строго согласованы с целевым назначением насаждений и с потребностью народного хозяйства в той или иной древесине. Не следует, конечно, забывать и быстроту роста древостоя. Скорейшее воспроизводство древесины — насущный для нас вопрос. Какие суммы потребуются на лесоразведение в водоохранной зоне в третьем пятилетии, в настоящее время сказать трудно. Главлесоохрана еще не выработала твердых норм на эти работы. Слабо еще развита механизация трудоемких процессов в лесокультурном деле и не изжиты еще в системе Главлесоохраантимеханизаторские настроения. ны Стахановское движение до последнего времени Главлесоохраной предоставлено самотеку. Организацией постоянных кадров рабочих Главлесоохрана еще вплотную не занялась. Если в настоящее время стоимость 1 га посева хвойных пород с обработкой почвы, включая стоимость семян, обходится около 100-120 руб., а посадки от 150 до 180

турных работ. Для правильного географического распределения площадей культур по способу их производства (посев, посадка), а также по породам необходимо предварительно иметь схему районирования территории водоохранной зоны с указанием, какова должна быть структура будущих лесов, наиболее отвечающая водоохранным и почвозащитным задачам. Без этих данных географическое размещение культур будет случайным и необоснованным.

Что касается размеров лесокультур на третье пятилетие, мы полагаем возобъеме наметить B можным их 1750 тыс. га (табл. 5).

1100 100		Табл	ицао
	Годы	Площадь в тыс. га	Процент роста по- след. года к предыд.
1938 · · · 1939 · · · 1940 · · · 1941 · · · 1942 · · ·		280 300 330 330 380 460	

Scanned by TapScanner

Проф. д-р сел.-хоз. наук В. В. Гуман и С. А. Дернов

руб. гектар, то к концу третьего пятилетия эти нормы должны быть снижены по крайней мере вдвое, но для этого надо механизировать и рационализировать все виды лесокультурных работ и создать постоянные кадры рабочих.

Что касается мер ухода за лесом, в третьем пятилетии ими должна быть обойдена вся площадь средневозрастных насаждений и по крайней мере половина площади приспевающих. Необходимо научно разработать вопрос о степени прореживаний и проходных рубок в во-доохранной зоне.

Далеко не удовлетворительно проводится работа по охране леса от вредных насекомых и от лесных пожаров. Главлесоохрана в данное время располагает целой армией лесников: 41,1 тыс. человек. При таком огромном штате можно поставить охрану леса как следует, и в третьем пятилетии это дело должно быть твердо налажено. До тех пор пока мы не поставим дело охраны леса от пожаров на должную высоту, культуры леса, на которые мы ежегодно будем затрачивать десятки миллионов рублей, будут постоянно подвергаться риску уничтожения огнем. Нередки случаи, когда сотни гектаров превосходных культур сосны уничтожа. лись огнем в несколько часов. В настоя, ищее время борьба с вредными насеко. мыми и лесными пожарами встает уже на путь механизации, но, к сожалению, и этому вопросу Главлесоохрана уделяет совершенно кедостаточно внимания.

В заключение следует отметить, что Главлесоохрана слишком медленно лик. видирует последствия вредительства и недостаточно энергично наводит большевистский порядок в лесном хозяйстве. Пора Главлесоохране взяться понастоящему за глубокую большевисткую перестройку всей работы. Партия и правительство предоставили лесному хозяйству все для того, чтобы эта важная отрасль вышла в ряды передовых.

10

ВЫРАЩИВАНИЕ СТАНДАРТНОГО ПОСАДОЧНОГО МАТЕРИАЛА*

Проф. доктор с.-х. наук В. В. ГУМАН и С. А. ДЕРНОВ

Вопрос о выращивании стандартного посадочного материала ставится в лесокультурном деле впервые. Необходимость выработки стандартов для посадочного материала диктуется, с одной стороны, требованием выращивания определенного высококачественного материала, с другой — необходимостью производить посадки не вручную, а механизированным путем — лесопосадочными машинами, применяя относительно однородный материал для успешного действия машины. Одновременно ставится вопрос и о стандартизации процессов выращивания посадочного материала.

Западноевропейская лесокультурная техника не знает лесопосадочных машин. Работа на узких, не особенно длинных лесосеках при сплошных рубках или же на небольших прогалинах

* Из работ ЦНИИЛХ.

при выборочных рубках, конечно, не требует применения посадочных машин. Наконец, отсутствие больших облеснтельных работ не создает стимулов применения механизированной посадки в буржуазных странах Европы. В Америке, где проводятся работы по облесению степных пространств, применение механизации посадочных работ необходимо, и там сконструированы первые лесопосадочные машины: «Новая идея», «Чампиэн», «Гамильтон» и др.

Широкое развитие лесокультурного дела в СССР, лесоразведение на больших сплошных лесосеках и грандиозные работы по созданию лесных полос в целях повышения урожая требуют механизации этих процессов, т. е. в первую очередь широкого применения лесопосадочных машин.

Для лесоагромелиорации вопрос этот можно считать в значительной степени

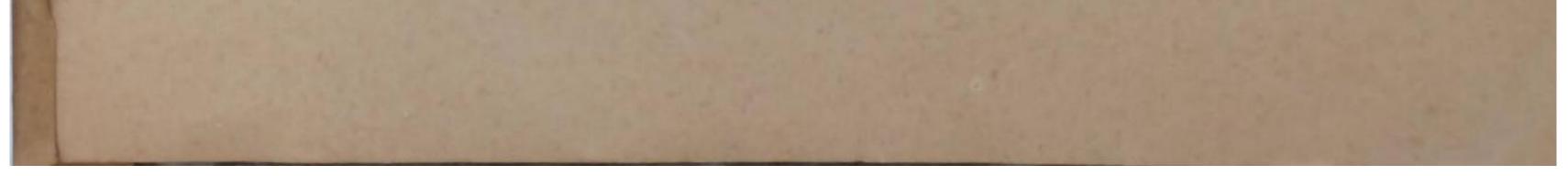
Scanned by TapScanner

Выращивание стандартного посадочного материала

разрешенным выпуском лесопосадочных машин ПЧ-2 и ПН-4, пригодных для работ на предварительно обработанной почве. Но при работах на лесосеках нужны такие лесопосадочные машины, которые могли бы работать без предварительной обработки почвы.

Успешное применение лесопосадочной машины возможно только при наличии однородного стандартного посадочного материала. Вследствие этого ЦНИИЛХ одновременно с конструированием лесопосадочной машины приступил к проработке вопроса о выращивании высокосортного стандартного посадочного материала, в первую очередь для сосны обыкновенной и лиственницы сибирской и затем дуба летнего, ясеня обыкновенного, бархата амурского и ореха манчжурского.

В настоящей статье мы даем материал в отношении первых двух пород. Основные требования к сеянцам этих двух пород следующие: корневая система должна быть у них хорошо развита и иметь длину не более 25 см и равномерное развитие по длине боковых корней второго, третьего и последующих порядков; надземная часть должна быть также хорошо развита и иметь сочную крупную зеленую хвою с полной верхней почкой; сеянцы должны быть однородными, совершенно здоровыми и без повреждений. В целях получения такого посадочного материала были заложены опыты и применялись следующие различные приемы выращивания: мелкая обработка почвы; внесение удобрений как в целях увеличения питательных растворов, так и изменения активной кислотности (pH) в благоприятную сторону; изменение физических квойств — общей порозности, капиллярной и некапиллярной скважности; изменение влажности почв, густота посева, декапитация. Разберем значение этих моментов в деле выращивания посадочного материала. По вопросу об обработке почвы большинство ученых и практиков склоняется к целесообразности применения неглубокой обработки — 15—20 см.


ние и в иностранной литературе и в ряде опытов на территории СССР. Анализируя потребность древесных пород в минеральных веществах, приходится прежде всего отметить, что древесные породы по сравнению с сельскохозяйственными растениями для своего полного развития требуют меньшего количества минеральных солей.

Удобрения должны или предоставлять пищу растениям непосредственно или вызывать реакции, превращающие недоступные или трудно доступные ранее растениям вещества в легко доступные или изменяющие физические свойства и условия для биохимических процессов. Главными элементами, собственно необходимыми для питания, являются азот, фосфор и калий; особенно нужным для вызова последующих реакций в почве чаще всего является кальций. Наиболее распространенными органическими удобрениями являются навоз, помет, фекалии, торф, костяная мука; минеральными, содержащими азот, - селитра, сернокислый аммоний; содержащими фосфорную кислоту, - томасов шлак (мука), фосфорная мука, суперфосфат, апатиты, фосфориты; содержащими калий, — сильвинит, каинит, нефелин, карналит, окись калия, зола; содержащими кальций — окись кальция, углекислый кальций, известняк, мергель; смешанные удобрения — компост, лесная подстилка. При большинстве работ лесоводы, в особенности в первый период, при закладке опытов, пользовались нормами, принятыми в селыском хозяйстве, чем иногда и обусловливались их неудачи; это особенно подчеркивает проф. Альберт.

1)

Вопрос о способах воздействия на развитие корневой системы путем внесения удобрений получил достаточное освещеПриведем данные по оценке отдельных удобрений, имеющиеся в литературе.

Роль азота в лесных почвах еще недостаточно изучена; доказано, однако, что кислые почвы задерживают развитие микроорганизмов, влияющих на накопление азота в почве. По мнению Альберта, из азотистых удобрений лучше других действует сернокислый аммоний. Обычные калийные удобрения в зависимости от состава на кислых почвах могут выделять соляную и серную кислоту, и применение их не всегда

Scanned by TapScanner

Проф. д-р сел.-хоз. наук В. В. Гуман и С. А. Дернов

имеет положительное

обонх видов удобрений особую роль играет одновременное применение извести. Так же стоит вопрос о применении фосфорной кислоты. Немек фиолетовый цвет хвои сосны связывает с недостатком в почве фосфора; для наилучшего развития сеянцев им устанавливается соотношение между фосфором, калием и азотом 1:1,53:3.62. Полное удобрение в наших опытах сократило длину стержневого корня. В последнее время, в особенности в Америке, уделяется внимание применению в виде удобрений лесной подстилки и настоя из лесной подстилки.

Параллельно с вопросом о регулировании количества питательных веществ в целях выращивания высококачественного посадочного материала стоит вопрос и о создании благоприятных условий в смысле кислотности.

Прорастание семян идет успешно при определенной степени кислотности; как показали работы А. К. Балашева, семена ели прорастают при условиях pH=2,5, в то время как семена сосны — при pH = 3,5.Американский лесовод Wilde рекомендует для выращивания сеянцев в питомнике реакцию с рН=5,6 (не ниже 4,5 и не выше 6,5). Проводя известкование, мы уже ставим себе целью изменение реакции среды, ведущее не только к уничтожению собственно кислотности, но и к освобождению элементов, необходимых для питания растений, а главное в целях создания условий, благоприятных для развития гумуса, для деятельности микроорганизмов, обогащающих почву азотом. Останавливаясь на изучении влияния физических свойств почвы, подчеркнем значение капиллярной и некапиллярной скважности почвы, улучшение которой может быть достигнуто как путем механической обработки почвы, так и путем внесения удобрений. Улучшение физических свойств создаст благоприятные условия для развития боковых корней и надземной части. Наконец, коснемся собственно влажности почвы. Р. Ланг в своей работе «Forstliche Standortslehre» показал, что органическое удобрение действует прежде всего не как собственно удобрение,

а как фактор, резко увеличивающий влажность почвы. Таким образом, наметив внесение навоза и компоста, мы уже будем иметь значительное изменение влажности почвы.

На увеличение влажности влиять и известкование. Но, помимо косвенных приемов увеличения влажности, следует полызоваться и прямымполивкой. По вопросу о применении поливки проведено много опытов как за границей, так и на территории Союза. Правда, большинство опытов на нашей территории охватывает преимуществен. но засушливые районы. Особенно заслуживают внимания опыты в Бузулукском бору, в Каменной степи, в Шиповом лесу, указывающие на положительное значение поливки. Однако все они дают сведения о проценте убыли культур, об общем развитии сеянцев, не уделяя обычно особого внимания развитию корневой системы. Тем не менее данные по Бузулукскому бору для сосны свиде. тельствуют, что однолетние сеянцы при обильной поливке развивают более мощную корневую систему, чем без поливки, двухлетние же сеянцы, наоборот, как на дюнных песках, так и на супесчаном черноземе дают более мощную корневую систему без поливки. Зато при обильной поливке увеличивается число мелких корней — 43%, а без поливки — только 24%, и относительное количество боковых корней (относится как 100:37). Резко меняется и надземная часть. Фактором, содействующим сохранению влажности, надлежит считать также применение предварительной (до появления всходов) покрышки и применение прокладок, прикрывающих междурядья. Опыт Д. В. Широкова, поставленный в Бузулукском бору, показал, что наилучшей покрышкой там следует считать для купесчаных черноземов опилки, мох и осоку, для дюнных песков-осоку и опилки. В качестве прикрытия применялся различный материал. Проф. К. В. Войт в б. Казанском опытном лесничестве произвел значительное улучшение физических свойств почв путем применения дощечек. Проф. Цизляр говорит о наилучшем действии комбинированных покрышек, например из мха и дощечек. Некоторые опыты, поставленные

12

Scanned by TapScanner

Выращивание стандартного посадочного материала

исследовательскими учреждениями Союза, определенно констатируют благоприятные результаты по применению мульчи. Американская практика вводила, кроме мульчи, применение мешочной материи (burlap).

Уже эти данные свидетельствуют о большом значении влажности почвы для развития корневой системы, и мы уверены, что в особенности в засушливые годы поливка и покрышка междурядий будут содействовать образованию компактной корневой системы и сильному развитию надземной части в питомниках и подзолистой зоны; это было прекрасно подтверждено нашим опытом в засушливое лето 1936 г.

Из факторов, могущих повлиять на развитие посадочного материала в нужном для нас направлении, обратим внимание на густоту размещения сеянцев на грядке. Классическими исследованиями по этому вопросу надлежит считать опыты швейцарской опытной станции, проведенные А. Бюлером. Один из главных его выводов: процент сеянцев І класса (технически годных) обратно пропорционален густоте посева, с увеличением же густоты посева процент проросших семян падает. Исследования Д. В. Широкова показали, что густые посевы сосны дают сеянцы со слабои корневой системой, лишенной разветвления; оптимальные результаты получаются при развитии 68 сеянцев на 1 м на супесчаных черноземах и 83 сеянцев на 1 м на дюнных песках. Исследования в Шиповском опытном лесничестве показывают, что наибольший процент наилучше развитых сеящев получился при редком посеве — 23 жолудя на 1 м.

машинизация всех процессов по выращиванию, начиная от предварительной подготовки почвы и кончая выкопкой посадочного материала.

Конкретное разрешение поставленного вопроса о выращивании посадочного материала ЦНИИЛХ начал с зесны 1936 г. Работа была проведена в Дружносельской даче Сиверского опытного леспромхоза, близ Лесокультурного городка, где помещаются почвенная и лесокультурная лаборатория и лаборатория механизации лесокультурных работ.

В этих целях намечено было заложить четыре питомника: два на песчаных почвах, два на суглинистых, причем на каждой почвенной разности один — на почве непосредственно из-под леса, другой — на почве, бывшей под сельскохозяйственным пользованием.

В 1936 г. опыт был заложен только на двух питомниках: песчаном в 28-м квартале и суглинистом в 48-м квартале, на почвах, бывших под сельскохозяйственным пользованием. В 1937 г. заложен в том же 28-м квартале, смежно с первым питомником, питомник на песчаной почве, не бывшей под сельскохозяйственным пользованием. Песчаный питомник заложен на верхнеморенных глинистых песках с небольшой примесью гальки; эти пески имеют на глубине 10-60 см глинистую прослойку, подстилаются они валунными суглинками. Верхний слой слабогумусированный песок (до 10 см), подзолистый горизонт до 10 см, уровень грунтовых вод 50-85 см (в зависимости от времени года). Этот участок был под посевом овса с викой. Второй питомник заложен на тяжелых суглинках, образовавшихся на ленточных глинах, находящихся уже на глубине 46 см. Глины карбонатны и вскипают на глубине 50 см. Гумусовый горизонт до 18 см, подзолистый — 6 — 8 см. Уровень грунтовых вод на глубине 165-180 см. Участок ранее был под огородом. Третий питомник был заложен рядом с первым, на участке, покрытом сосновым жердняком. Осенью 1936 г. лес был выкорчеван, и начата предварительная обработка почвы; весной 1937 г. обработка почвы была закончена.

Из дополнительных приемов, оказывающих влияние на развитие корневой системы в отношении дуба и ясеня, следует воспользоваться приемом декапитации проросших желудей. Можно применять также уплотнение почвы под рэзрыхленным слоем.

Оба эти приема применяются при выращивании пробкового дуба и были испытаны на территории Союза.

Наконец, в процессе выращивания стандартного посадочного материала должна быть введена механизация или

Scanned by TapScanner

Проф. д-р сел.-хоз. наук В. В. Гуман и С. А. Дернов

Механический состав почв этих трех питомников приведен в табл. 1.

14

Для закладки питомника участки были вспаханы плугом Д-30-П на глубину 12 см, далее дважды пройдены культиватором и бороной «зиг-заг» в два следа. На почве, бывшей под лесом, после корчовки были произведены осенью 1936 г. пахота, дискование, а в 1937 г. еще раз участок был вспахан и пройден дважды культиватором и зубовой бороной.

Опыты 1936 г. велись при грядковом методе выращивания, в 1937 г. — при участковом методе ленточными трехстрочными посевами.

На всех питомниках были взяты образцы и был произведен анализ химических свойств почвы, а именно: активной кислотности рН (электрометрически), гумуса (по Тюрину), суммы поглощенных оснований (по Каппену), гидролитической кислотности (по Дайкухара), легкоподвижной фосфорной кислоты (по сти под влиянием комбинации извести с Кирсанову), нитратов (по Риму). В табл. 2 навозом и навозной жижей.

(стр. 15) приводим данные для горизонтов А1 и А2.

На основании этих данных можно заключить, что песчаная почва нуждается как в органическом, так и в минеральном удобрении, суглинистая нуждается менее как в том, так и в дру-ГОМ.

B качестве удобрений применялись кальций в виде мела, фосфоритная мука с 15%-ным содержанием фосфора, калий в виде сильвинита с 12%-ным содержанием калия, азот в виде сернокислого аммония, древесная зола, навоз конский, навозная жижа, компост из опилок с фосфорной мукой и сильвинитом (рис. 1).

Оценивая влияние этих удобрений. можно сделать следующие выводы. Физические свойства почвы в относительно незначительной степени улучшились под влиянием извести, навоза и навозной жижы, древесной золы, в особенно-

Таблица 1

peaoB	Название почвы и глубина горизонтов в см		ент содера частиц	Сумма частиц в %		
Nê pas	ВСМ	от 1 до 0,25 мм	от 0,25 до 0,05 мм	от 0,05 до 0,01 мм	0,01 мм (физич. песок)	0,01 ⁷⁷ мм (физич. глина)
1	Песчаная (бывшая под сх. пользованием):					
	$\begin{array}{c} A_{1} - 0 - 10 \\ A_{2} - 10 - 20 \\ B_{1} - 20 - 34 \\ B_{2} - 34 - 75 \\ C - 75 - 100 \end{array}$	64,89 66,70 40,41 81,65 87,43	23,79 23,75 23,25 14,63 8,37	3,72 2,61 14,23 1,00 0,92	92,40 93,06 77,94 97,28 96,72	7,60 6,94 22,06 2,72 3,28
3	Песчаная (не бывшая под сх. пользова- нием):					
	$\begin{array}{c} A_1 - 6 - 14 \\ A_2 - 14 - 32 \\ B_1 - 32 - 50 \\ B_2 - 50 - 74 \\ C - 75 - 100 \\ \end{array}$	64,62 59,64 48,12 76,92 87,14	24,71 28,33 24,13 17,95 8,56	4,08 4,39 10,65 2,05 1,35	93,41 92,36 82,90 96,92 97,05	6,59 7,64 17,10 3,08 2,95
2	Суглинистая:					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,79 5,45 2,51 2,82 1,80 0,67 25,67	30,22 31,18 25,35 13,29 8,22 5,45 59,70	29,59 30,10 32,83 29,76 36,75 27,11 8,11	64,59 66,73 60,69 45,87 46,77 33,23 93,48	35,41 33,27 39,31 54,13

Scanned by TapScanner

Таблица							
M paspeson	Наименование почвы и глубина горизонтов в см	pН	Сумма погло- щенных осно- ваний в мг-экв	Гидролитическ. кислотность в мг-экв	Фосфорная кислота (Р ₂ O ₅) в мг-экв	Lymyc B %	
1	Песчаная, бывшая под сх. пользованием: $A_1 = -0 - 10$	4,5 4,6	0,2 0,4	4,56 2,36	2,5 1,0	1,60	
2	Песчаная, не бывшая под сх. пользова- нием $A_1 - 0 - 14 \dots $	4,7 5,2	2,2 1,0	3,90 3,40	2,50 1,25	1,73	
3	Суглинистая, бывшая под сх. пользованием $A_1 = 0 - 18 \dots $	6,1 6,6	10,2 7,1	3,41 2,19	5,00	4,50	

В комбинациях удобрений с известью понизилась активная (до 6,5-7,0) и гидролитическая кислотность, повысились сумма поглощенных оснований, содержание фосфора, нитратов. Удобрения с азотом сильно повысили содержание нитратов, фосфорные удобрения повысили содержание фосфора. Навоз и компост повысили количество нитратов, фосфорной кислоты и в 1936 г. гумуса. Однако этот опыт не дает возможности полностью оценить влияние удобрений. Причиной этого является запоздалое внесение удобрений, именно только перед посевом во второй половине мая 1936 г. и в тот же период в 1937 г. Далее необходимо отметить исключительно сухие вегетационные периоды в 1936 и в 1937 гг., что также нельзя признать нормальным для таежной зоны. Заслуживает внимания выявление стоимости отдельных мероприятий даже для наших небольших питомников. Так, например, стоимость поливки с прикрытием определяется в 71 коп. на 1 000 сеянцев, в то время как внесение удобрений обходится в 8-32 коп. на 1 000 сеянцев, а в частности навоз и кальций в 14 коп.

навозной жижи резко улучшило химические свойства почв, судя по опытам 1936 и 1937 гг.

Ранее уже упоминалось, что при проведении опытов для каждого варианта опыта закладывались три грядки (или участка): опытная, контрольная и повторная. В 1936 г. был применен грядковый рядовой посев в бороздки, расположенные поперек гряд, при расстоянии между бороздками в 20 см. Гряды делались насыпные, высотою 8 см, шириною 1 м, при длине грядки для хвойных пород 4 м и для лиственных 8 м. Глубина обработанного слоя по всей грядке была

Хотя мы считаем наши выводы окончательными, мы все-таки должны отметить, что как для кислых песчаных почв, гак и для почти нейтральных суглинитых внесение кальция с навозом или

Рис. 1. Внесение удобрений

Scanned by TapScanner

Проф. д-р сел.-хоз. наук В. В. Гуман и С. А. Дернов

16

Рис. 2. Посев в питомнике дисковой 12-рядной сеялкой «Красная звезда»

одинаковой — 17 см. Лишняя земля из междугрядий убиралась.

Преследуя цели возможно большей замены при выращивании посадочного материала ручного труда машинами, в 1937 г. отказались от грядкового посева, и на вновь заложенном под опыты участке для хвоиных пород применялся только безгрядковый (ленточный трехстрочный) посев при помощи конной сельскохозяйственной двенадцатирядной ссялки «Красная звезда» (рис. 2 и 3). Высев семян производился для одной ленты строчек через 2-й, 3-й и 4-й семяпроводы и для другой — через 8-й, 9-й и 10-й. Не участвовавшие в посеве семяпроводы (1-й, 5-й, 6-й, 7-й, 11-й и 12-й) закрывались задвижками. Во избе-

жание рассыпания семян по всему бункеру в последнем ставились поперечные перегородки. «Нажимные» пружины снимались, а к высевающим дискам были приделаны ограничители заглубления, позволяющие отрегулировать заделжу семян на желаемую тлубину. Каточками ограничителей в то же время прикатывалась почва в посеянных бороздках,

Таким образом, за один заезд сеялки получались две ленты по три строчки в каждой. Расстояние между строчками определяется расстоянием между дискаопределяется расстоянием между дисками, равным 15 см. Промежуток же между лентами равен 60 см, что позволяет механизировать уход до применения фрезы включительно. Производительность посева по сравнению с ручным увеличилась в 70—75 раз.

В пределах каждой породы при закладке опытов посевы производились одними и теми же семенами.

Вес потребного для высева количества семян определялся по способу Энглера: число всхожих семян в тысяче 860×85:100=731 шт. (860-число полных семян из тысячи, а 85 — процент всхожих семян). Для посева 200 всхожих семян в метровую бороздку их потребуется 4 790×200:731=1,5 г. Учитывая некоторую раструску семян при посеве, норма высева была увеличена до 1,7 г.

Рис. 3. Безгрядовые ленточные трехстрочные посевы сосны в 3-месячном возрасте

В опытах выращивания посадочного материала «в редком стоянии» нормы семян были уменьшены в 2 раза.

Качество высеваемых семян в 1937 г. было кледующее: сосна из Лужского леспромхоза сбора 1936 г. — всхожесть 96%, чистота 98%; вес 1000 семян — 5786 г; лиственница сибирская из Западносибирского края — всхожесть 44%, чистота 96%; вес 1000 семян — 9 626 г.

При указанном качестве норма семян определилась в 1,3 г. Имея в виду некоторую неизбежную раструску семян и буксовку колес, норму высева пришлось увеличить до 1,4 г. Число однолетних всходов на 1 пог. м получилось 100— 130 шт. Соответствующее количество семян лиственницы сибирской определилось в 3,8 г и дало однолетних всходов в среднем 70 шт.

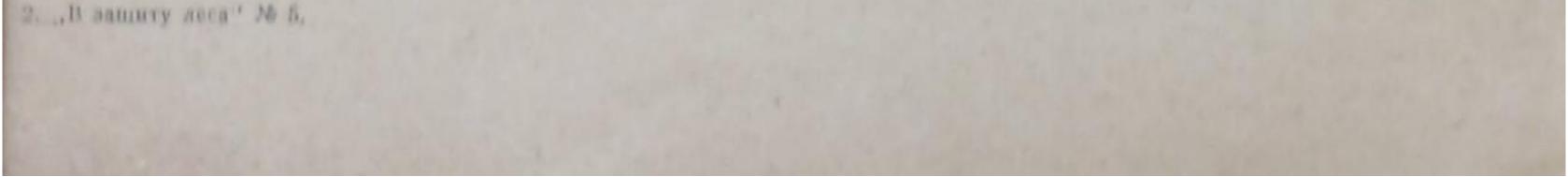
В опыте выращивания сеянцев в ред-

Scanned by TapScanner

baras creating coannet conclud addrentshiller. O's to a succession on on one is the

And this contract contract and the contract ARRESTRATES REPARTER DESCRIPTION CONTRACTORIES JUCK HA HULLCTHARY C TARIA PROMETON, stroom acatego, spantalontee meerephil hidconsidere annapara, ne macasiero bemani, Под каждый высстающий диск для сбора семян ставился сосуд и делилось онределенное число оборотов колеса (15-20). Зная длину окрумности колеса, чис-TO OCOPOTOR H REC RECEMENTER CEMENT, легко определить количество высеваемых на 1 пог. м каждым диском семин.

После того как добивались высева од: ного и того же количества семян, на регуляторе семлки делилась соответствующая заметка. По причинам, зависсвшим от особенности орудня, наблюдалось некоторое расхождение в количествах выссваемых семян отдельными дисками; в данном случае эти количества на 1 пог. м бъяли следующие: 1,48; 1,46, 1,40; 1,46; 1,37 и 1,35 г. в среднем 1,44 г. Действительный высов семян. как показало взвешивание их до и после посева, с учетом числа погонных метров посева, оказался близким к принятому и составлял 1,36 г на 1 пог. м. Семена задельшались на глубину 1 см. с колебаниями от 0,5 до 1,5 см. Незаделанные семена встречались редко. Вследствие небольшого заглубления высевающих дисков семлки, опирающихся на свободно вращающиеся каточки ограничителей заглубления, аначительно синжаются тяговые усилия, и в таком виде сеялку легко тинет одна лошадь средней упиталности. Применение одной лошади вместо двух здесь особенно выгодно, так как она идет по промежутку между лентами и не портит ровной поверхности полос под посевами, Засеянные грядки (участки) покрывались мхом-сфагнумом, взятым в сосед. нем болоте. С момента появления всходов покрышка укладывалась валиками в междурядия, где оставалась в течение трех недель, предохраняя почну от высыхания, а нежные всходы от ожога; за этот срок они успевали несколько окрепнуть, и опасность повреждения их от ожога исчезла. Дальнейшее оставление покрышки в междурядиях сопряжено с риском получить вытянутые, этиалированные, сеянцы.


The availability wear, an maintenant su RELICENSED CON, REAL CONTRACTOR, IN THERMOMENTER, INTERполке и рыжлении менедурилии;

It succession and and to so need success ные поселы выли полнты 4 раза на р 10 A GRA ORDER HOUTINGY HALL MA, THO A ORE ALLER CHERRETH SR REFETRILIERING THE phone cocrammar do a na 1 Mª, 13 1937 F. ABYRACTIONS CONDING (HOCORD 1930 F) HE HOARDBALLICE CONCEM, ETPOTULAE ME HOEBHA 1937 г. за негатационный период поливались 2 раза по 5 л на 1 м2; помимо OCALISON, HA I Mª HORENA IPMILLIOLI IO IL

Посены с опытами применения полни. ICH COOTHETCTHEHHO IN KRACHOM CENOHE HOливались в 4 раза чаше, с расходом воды, в 4 раза большим, чем истальные опыты, В действительности же воды в почну поступило мельше, так каж нервые три недели полижи производиляет. при наличии и междуридиих никрышии на мха и часть воды задерживалась в самой покрышке.

Межлуридни на несчиной ночие и 1936 г. рыжлились только один раз, одновременно с уборжой с них покрышки. На суглинистом же питомнике, почна которого очень склонна к заплыяанию при поливках и дождах, в при высыхании дает плотную корку, рыхление междурядий в 1936 и 1937 гг. приходилось применять после каждого дождя и полиныси, как только начинала появляться ворка, В 1937 г. на песчаном нитомника рыхление не применялось жожсе, Посевы в 1936 г. на обсих почвенных разностях пропалывались за весь сезон четыре раза, в 1937 г. - три раза. Фактически же суглинистый питомник пропалывался большее число раз, чем пасчаный, так как каждое рыхление междурядий сопровождалось удалением сорной растительности. Почти на всех удобренных грядках травянистая растительность ноявлялась быстрее и в несколько большем количестиг, чем на неудобренных. Сильнее зарастали грядки, удобренные навозом, навозной жижей, компостом и с применением полиция, Зарастание на суглинистой почие шло более интенсивно, чем на песчаной.

Очень слабо зарастали посевы 1937 г. на песчаной почва, взятой из-под леся; в небольшом количестве травяниства растительность на них появилась лине, к

Scanned by TapScanner

осени, поэтому на этом участке прополка не производилась.

Необходимо отметить имевшее место весною 1937 г. «выжимание» эднолетних сеянцев на суглинистой почве, вызвавшее повреждения у 20-25% посевов сосны; в большей мере пострадала лиственница сибирская. Это явление потребовало весною соответствующего оправления сеянцев. Места с выжиманиями были замечены, и при взятии образцов для анализов это учитывалось.

В течение вегетационного периода велись наблюдения за появлением всходов, ростом (что фиксировалось периодическим фотографированием), а также за температурою почв при разных удобрениях.

По окончании вегетации, в первых числах октября, посадочный материал подвергался окончательному анализу, в результате которого выяснилось, что разные удобрения в пределах одной и той же почвы, а также самые почвы оказывают значительное влияние на строение корневой системы. Разнообразие форм корней для хвойных пород нами сведено к следующим пяти эсновным типам (рис. 4): I тип характеризуется наличием хорошо развитых боковых корней по всей длине стержневого корня; II тип — обильные боковые корни имеются лишь в верхней половине стержневого корня; III тип-боковые ответвления имеются только в верхней и нижней третях эго длины, средняя же часть или лишена боковых корней или же имеются единичные боковые корешки; IV тип - боковые корешки имеются лишь в нижней части стержневого корня; V тип - стержневой

корень или совершенно лишен боковых корней или же имеются единичные сла бо развитые боковые корешки.

Ясно, что наиболее желительными для посадки будут сеянцы с корнями І и Ц

В наших опытах, как указывалось улучшение корневой системы сеянцев достигалось применением различных удобрений и иных способов воздейсь вия на развитие корней.

Так, например, на песчаной почле. бывшей и не бывшей под сельскохозяя. ственным пользованием, применение дая выращивания сосны извести, а также в сочетании ее с навозом, с навозной жижей, с азотом и фюсфором, применение азота с фосфором, золы, компоста, а также поливки и выращивания посадочного материала в редком стлянии значительно улучшило тип корней в сторону преобладания сеянцев с корнями I типа; на опытных грядках их имеется в 1,7-4 раза больше, чем на контрольных. Число сеянцев с корняма V типа на удобренных грядках составляет не более 4%, в то время как на неудобренных число их доходило до 30%, т. е. третья часть посадочного материала оказалась совершенно непригодной для посадки. Улучшение типа корней отразилось на увеличении числа боковых корней второго, третьего и т. д. порядков и общего веса их (в 1,5-4 раза по сравнению с контрольными сеянцами). На развитие корневой системы однолетних сеянцев сосны на песчаной почве, взятой из-под леса, применявшиеся удобрения благоприятное влияние оказали сильнее, и перечень удобрений, давших благоприятные результаты, оказался шире, чем на той же почве, бывшей под сельскохозяйственным пользованием. На второй год на песчаной почве, бывшей под сельскохозяйственным пользованием, у сеянцев сосны в двухлетнем возрасте разница по числу сеянцев с корнями I и II типов между удобренными и неудобренными трядками стала меньше, однако корни у сеянцев, выросших с применением удобрений, оказались лучше развитыми, обладающими большим весом, чем у контрольных, за счет увеличения числа разветвлений второго, третьего и прочих порядков.

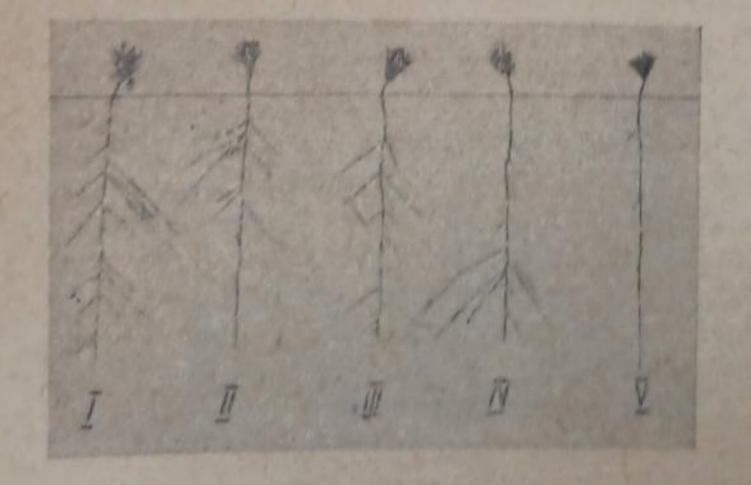


Рис. 4. Типы корней однолетних сеянцев сосны

Scanned by TapScanner

На суглинистой почве, бывшей под сельскохозяйственным пользованием, олагоприятные результаты на развитие корисвой системы сеянцев оказали: кальций илюс навоз; кальций илюс возвозная жижа; выращивание сеянцев в редком стоянни; зола; компост; кальций плюс азот плюс фосфор и поливка с прикрытием междурядий мхом. Влияние этих удобрений и поливки выразилось в улучшении типа корней и в увеличении (в 1,5-2 раза) веса боковых корней главным образом за счет возросшей мочковатости корневой системы. На тех же сеянцах в однолетнем возрасте благоприятно отразились: зола, выращивание сеянщев в редком стоянни и поливка с прикрытнем междурядий мхом.

Заметно задерживающего влияния на рост стержневого корня в глубину от применявшихся удобрений и других видов воздействия на обоих почвенных субстратах не наблюдалось, за исключением кальция, давшего уменьшение длины стержневого корня у однолетних сеянцев в 1936 г. на 2 см и у двухлетних в 1937 г. на 3,4 см. по среднието с песчаным средния длина стержневого корня на 3-4 см меньше.

Влизяние удобрений наглядно иллюстрируют рис. 5—7. Разрешение вопросов выращивания стандартного посадочного материала не может быть осуществлено в одил год, и исследования в этом направлении, рассчитанные на ряд лет, в данное время находятся еще в стадии разработки. Поэтому приводимые ниже выводы не претендуют на исчерпывающую полноту, и их следует рассматривать как предварительные.

1. Выращивание посадочного материала в двухлетнем возрасте с ограниченной длиной корневой системы (до 25 см) на песчаной почве более затруднительно, чем на суглинистой, вследствие меньшей плотности песчаной почвы и большего промывания удобрений в глубину.

2. На песчаной почве вследствие ее бедности влияние удобрений сказывается более резко (в особенности на почве,

Суглинистая почва дает уменъшение длины стержневого корня в среднем на 2 см.

Положительное влияние удобрений: СаСОз и золы, а также поливки с прикрытием междурядий мхом на двухлетние сеянцы лиственницы сибирской на пссчаной почве выразилось главным образом в улучшении типа корневой системы и увеличении массы боковых корней (в 1,5—2,5 раза). Особенно сильно повлиял на второй год кальций, который, кстати сказать, в предыдущее засушливое лето 1936 г. себя не проявил.

У двухлетних сеянцев лиственницы сибирской на улучшении типа корней применявшиеся удобрения не отразились, но вследствие увеличения числа боковых разветвлений (второго, третьего и прочих порядков) вес их повысился в 1 — 1,75 раза. На этой же почве при выращивании в 1936 г. однолетних сеянцев благоприятные результаты дали навоз и навоз в сочетании с кальцием. У лиственницы сибирской, так же как и у сосны, не наблюдается снижения длины стержневого корня от применения удобрений, однако на суглинистом субстрате

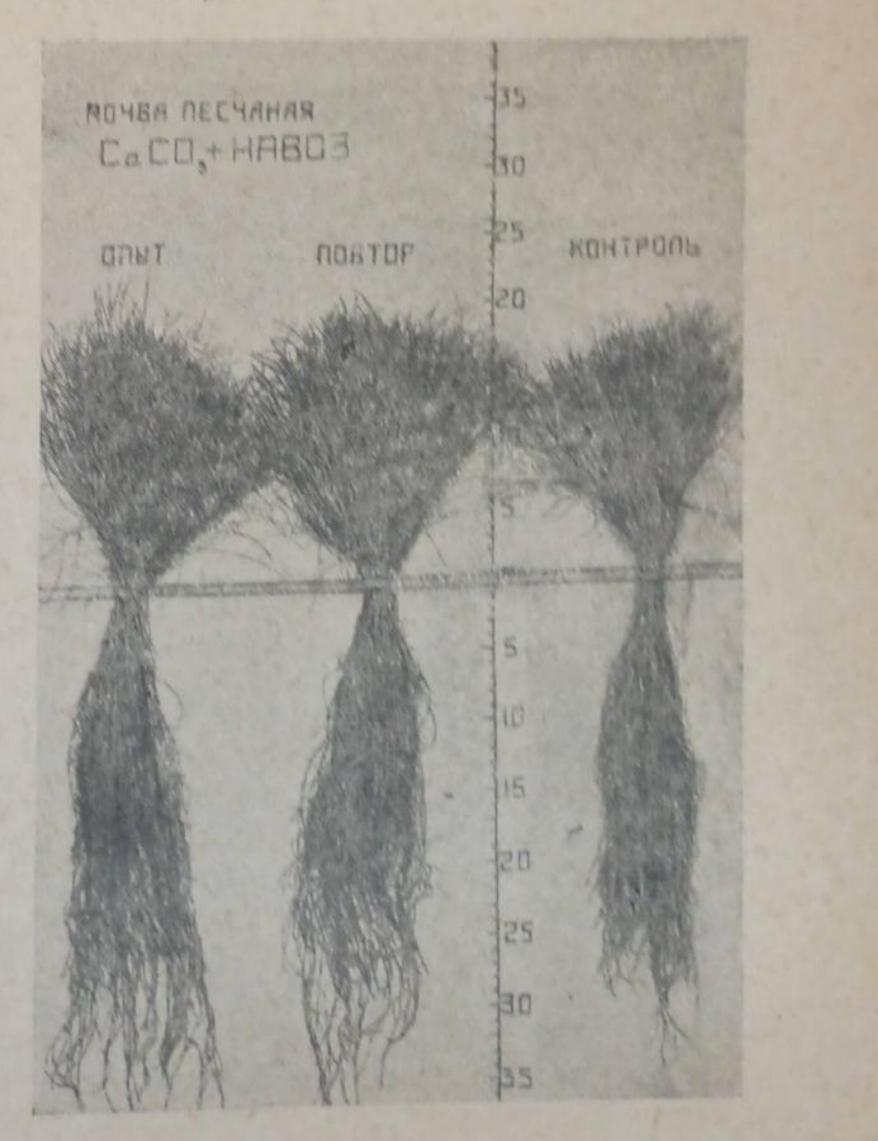
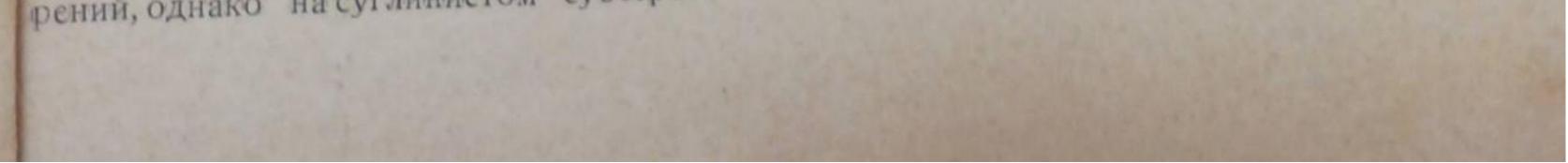



Рис. 5. Влияние (CaCO₃+навоз) на рост двухлетних сеянцев сосны

Scanned by TapScanner

Проф. д-р сел.-хоз. наук В. В. Гуман и С. А. Дернов

20

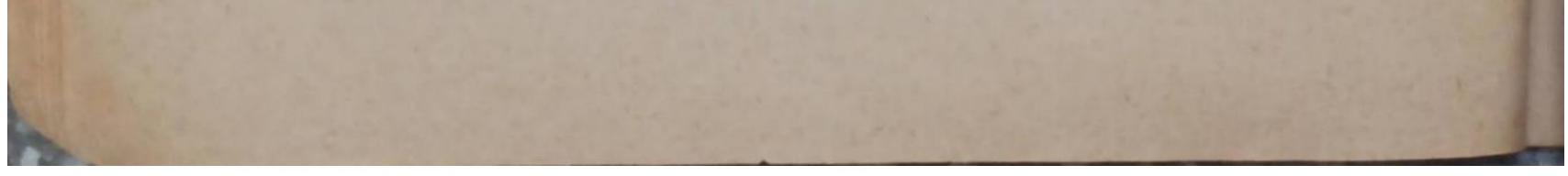
применения в качестве удобрений др весной золы, на суглинистой же почвеот комбинации кальций плюс навоз.

6. Следует предусматривать возмоя ность полного перехода на песчань почвах на безгрядковый посев с прима нением для хвойных семян и други подобных им конной сеялки. При это производительность посева по сравне нию с ручным увеличивается в 50—7, раз и значительно удешевляется стои мость ухода, допускающего применени механизации.

7. При уменьшенных нормах высева качество посадочного материала улуч. шается, поэтому при выращивании посадочного материала целесообразнее применять небольшие нормы. Так, для семян сосны со всхожестью не менее 90% и чистоте не менее 95% норму высева можно считать достаточной в 1,5 г на 1 пог. м.

8. Учитывая возможность на суглинистых почвах выжимания сеянцев моровами, целесообразнее закладывать питомники на более легких субстратах.

Рис. 6. Влияние Са на рост двухлетних сеянцев лиственницы сибирской


вышедшей из-под леса), чем на суглинистой, бывшей под сельскохозяйственным пользованием

3. Из применявшихся удобрений и других приемов выращивания сосны благоприятными для воздействия на развитие корневой системы являются: 1) кальций плюс азот плюс фосфор; 2) азот плюс фосфор; 3) кальций плюс навоз; 4) навоз; 5) поливка; 6) зола, 7) компост; 8) кальций и 9) выращивание в редком стоянии.

4. На суглинистой почве, бывшей под сельскохозяйственным пользованием, на развитие корневой системы сеянцев сосны благоприятное влияние оказывают поливка с покрытием междурядий мхом и выращивание в редком стоянии.

5. На песчаной почве, бывшей под сельскохозяйственным пользованием, при выращивании лиственницы сибирской лучшие результаты получены от

Рис. 7. Влияние навоза на рост однолетних сеянцев сосны

Scanned by TapScanner

ОЧЕРЕДНЫЕ ЗАДАЧИ ХИМИЧЕСКОГО МЕТОДА БОРЬБЫ С ВРЕДНЫМИ ЛЕСНЫМИ НАСЕКОМЫМИ

В. Л. ЦИОПКАЛО

В течение последнего десятилетия в практику борьбы с вредителями леса вошел и прочно укрепился метод химической борьбы с вредными насекомыми, при котором с помощью самолета распыливается сухой порошкообразный инсектисид, покрывающий тонким слоем ядовитой пыли листву или хвою. Гусеницы, жуки или другие грызущие насекомые, поедая эту отравленную пищу, принимают смертельную дозу яда и погибают в течение более или менее продолжительного времени. Если яд обжигает ротовые части насекомого, оно может отказаться от такой пищи и не получит, следовательно, смертельной дозы. В таких случаях действие яда может ограничиться преходящим болезненным состоянием вредителя, но иногда потомство таких подтравленных насекомых оказывается нежизнеспособным или неполноценным. Впрочем, в некоторых случаях ничтожные дозы принятого яда служат как бы лекарством и помогают вредителю оправиться от других заболеваний. Несмотря на такие возможности, применение авиахимического метода помогло в ряде случаев и у нас и за границей прекратить массовое размножение таких вредителей, как сосновая совка, пяденица, различные виды шелкопряда и др., против которых до настоящего времени не имеется других эффективных мер борьбы. Однако следует отметить, что опыливание с самолетов одних и тех же участков даже по нескольку раз иногда не давало желательных результатов, и количество вредителей в зараженных насаждениях оставалось угрожающим в течение ряда лет. Так, например, в лесах Черниговской области, несмотря на применение авиахимического метода с 1934 г., проблема ликвидации очагов размноТаким образом, авиахимический метод в своем современном состоянии не может пока гарантировать действенных результатов во всех многообразных случаях борьбы с лесными вредителями, и поэтому необходимо расширить исследовательские работы в этой области.

Перейдем к вопросу о ядах, применяемых для опыления зараженных насаждений. До последнего времени в СССР при борьбе с вредителями леса применяется почти исключительно арсенит кальция, содержащий 70-72% мышьяковистого ангидрида As2O3. При такой высокой концентрации ядовитого начала в инсектисиде количество последнего на единицу площади приходится очень сильно сокращать. Обычно на практике у нас распыливают 6-10 кг на 1 га. Однако до 80% этого количества попадает на землю и лишь небольшая часть задерживается в кроне и может служить для отравления вредителя. Так как гусеницы не всегда приступают к питанию непосредственно после нанесения ядовитой пыли на листву или хвою, промежуток между моментом опыления и началом массового отравления может составить от 2 до 7 дней. В течение этого периода яд обязательно должен находиться на растении и хорошо противостоять действию ветра и осадков. Специально поставленными опытами выяснено, что уменьшение количества арсенита кальция на хвое происходит довольно быстрыми темпами. Если принять за 100% количество яда на хвое непосредственно после опыления, то через 24 часа это количество уменьшается до 78%, через 48 час. — до 29% и через 72 часа-до 21%, т. е. уже через 2 дня после опыления на хвое остается около четверти распыленного лишь количества яда (при средних условиях

Scanned by TapScanner

В. Л. Циопкало

вый шелкопряд, сосновая пяденица, могут прекращать питание дня на три и более, и, следовательно, почти полностью избегать потребления отравленной пищи. На практике это приводит к тому, что опыление приходится повторять, причем обычно дозировки при этом остаются теми же, что и при однократном опыливании.

Вопрос о дозировках для тех или иных видов вредителей остается пока неразработанным; против соснового пилильщика, например, рекомендуется та же дозировка, что и против сосновой пяденицы. Поэтому пересмотр дозировок и установление наиболее рациовок и установление наиболее рациональных доз хотя бы для главнейших вредителей леса является неотложной работой. Повышение цен на инсектисиды следует поэтому рассматривать как практический стимул к бережливому расходованию ядов при опылении.

Вопрос о дозировках очень тесно связан с вопросом о концентрации ядов. До настоящего времени заводы, изгомышьяку насекомых и применить дру. гой вид инсектисида не представляется возможным.

Вовсе не испытана и не проверена у нас возможность применения жидких и полужидких инсектисидов в условиях лесной обстановки. В Америке с помощью самолетов осуществляется образование туманов из мельчайших чаразование туманов из мельчайших чаразование туманов из мельчайших чаразование туманов из мельчайших чаральных масел, содержащих растворенные в них ядовитые вещества. Частички масла легко растекаются по поверхности хвоинок, листьев или тела гусениц и создают очень устойчивую обаолакивающую пленку, которая обусловливает хорошую прилипаемость как кишечных, так и наружных инсектисидов

Поскольку при использовании растворов ядовитое вещество распределяется более равномерно, чем при использовании даже тонко размолотого сухого порошка, и расход на единицу площади всегда будет меньше, чем при опыливании, организация опытов по проверке применимости опрыскивания водными растворами зараженных лесных насаждений является вполне целесообразной. Особенно следует подчеркнуть необходимость проверки метода образования над зараженными лесными массивами туманов из масляных или водных растворов инсектисидов. Перед конструкторскими отделами научно-исследовательских учреждений следовало бы поставить задачу создания соответствующего типа авиаопрыскивателя. Ассортимент инсектисидов, применяе мых в борьбе с вредителями леса, пока у нас крайне опраничен. Кроме мышья ковистокислого кальция, наши практи ки не знают и, можно сказать, не при знают других инсектисидов. Между тем по своему токсическому действию фто ристые инсектисиды, особено кремне фтористый натрий, при использовании их против таких вредителей, как моло дые гусеницы сосновой совки, и, оче видно, против личинок пилильщика, ма ло уступают мышьяковым препаратам

22

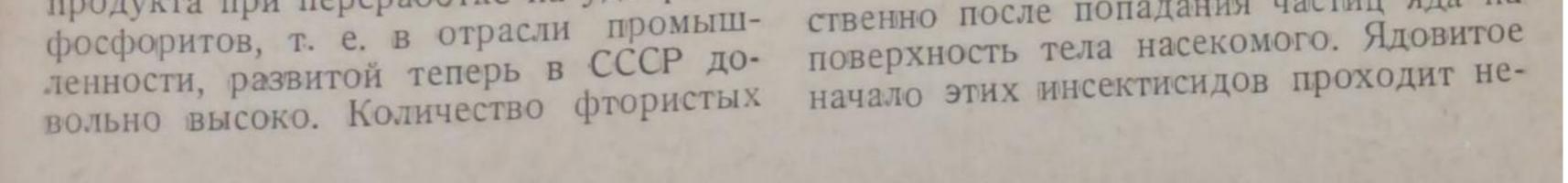
13

товляющие инсектисиды, выпускают для потребностей лесного хозяйства один сорт яда — мышьяковистокислый кальций с 70% содержанием мышьяковистого ангидрида, что зафиксировано общесоюзным стандартом. Следует отметить, что применение инсектисида с таким высоким содержанием яда не для всех случаев вызывается действительной необходимостью. Против соснового пилильщика, например, и сосновой соввполне возможно КИ применение мышьяковых препаратов с небольшим содержанием мышьяка. Распыливание же препарата, содержащего 53% чистого мышьяка, — вещества дефицитного как в нашем Союзе, так и во всем мире, — является ничем не оправдываемой расточительностью. Следовательно, пересмотр требований ОСТ к инсектисидам и расширение ассортимента мышьяковых препаратов с различным содержанием ядовитого начала, предназначенных для целей борьбы в лесном хозяйстве с вредными насекомыми, является совершенно назревшей задачей. Использование же неразбавленного мышьяковистокислого кальция следует ограничить лишь случаями, когда борьбу приходится вести против особо стойких к

О сравнительном действии фтористы: и мышьяковых инсектисидов можн судить по данным Украинского научно исследовательского института агролесо мелиорации, приведенным в таблице.

Scanned by TapScanner

Название инсекти-	Смерт	ность іц в %	Быстрота отмирания гусениц в днях		
	сосновая совка	сосновая пяденица	сосновая совка	сосновая пяденица	
Мышьяковистокис- лый кальций Кремнефтористый натрий Фтористый натрий . Кремнефтористый[ба- рий	94,6 94,9 69,7 20,7	95 87 69	1,47 1,96 2,48 2,71	3,0 3,5 4,2	


При этом следует отметить, что гусеницы в молодом возрасте, как правило, более чувствительны к действию инсектисидов.

Ожигающее действие фтористых препаратов на растения и в частности на хвою сосны мало отличается от действия мышьяковых инсектисидов, как это видно из приводимых данных, полученных при опыливании сосны дозировками, соответствующими расходу примерно 10 кг яда на 1 га. Применение мышьяковистокислого натрия дало 62,5% поврежденной хвои, мышьяковистокислого кальция—38,2%, кремнефтористого натрия-37,1%, фтористого натрия-23,2%, кремнефтористого бария-25,3%. По своему действию на теплокровных животных и людей фтористые инсектисиды по сравнению с препаратами мышьяка менее опасны. В небольших дозах (около 1 мг на 1 кг тела животного) фтористые соединения могут действовать на зубы, вызывая пятнистость эмали. Значительно большие дозы необходимы для того, чтобы вызвать задержку роста, нарушить функции органов пищеварения, размножения или, наконец, привести к окончательной гибели организм.

инсектисидов, которые можно получить при этом процессе, очень велико и исчисляется многими тысячами тонн. Эти инсектисиды, кроме трудностей технологического процесса (фтор улетает вместе с отходящими газами, и связывание его представляет довольно трудную задачу), имеют ряд других недостатков: высокий удельный вес (особенно кремнефтористый натрий), незначительную распыливаемость и слабое прилипание к растительности. В результате исследовательских работ, проведенных главным образом в Америке, удалось значительно улучшить физические свойства фтористых препаратов. Не вдаваясь в подробности, можно указать, что путем рациональной комбинации различных примесей в Америке получены облегченные образцы кремнефтористых препаратов, которые распыливаются значительно лучше, чем, например, кремнефтористый натрий. Путем более тонкого, чем для мышьяковых препаратов, размола кремнефтористых инсектисидов можно добиться лучшего их прилипания к растениям. За последнее время за границей, и особенно в Америке, на рынок выпущен целый ряд новых фтористых препаратов для борьбы с вредителями: фтористоалюминиевый натрий, фтористоалюминиевый калий, фтористый калий, кремнефтористый калий и фтористый кальций. Инсектисидная промышленность Советского Союза, располагающая колоссальными запасами сырья для изготовления фтористых препаратов, сможет и должна развернуть интенсивную деятельность с целью замены остродефицитных мышьяковых инсектисидов разнообразными фтористыми препаратами с улучшенными физическими свойства-МИ.

Как известно, фтористые инсектисиды можно получить в качестве побочного продукта при переработке на удобрения

Кроме кишечных инсектисидов, действующих сравнительно медленно и лишь после того, как они вместе с пищей попадут внутрь организма вредителя, вполне целесообразно использование контактных инсектисидов, действие которых начинается непосредственно после попадания частиц яда на

Scanned by TapScanner

В. Л. Циопкало

посредственно через кожные покровы насекомых, попадает к нервным центрам, разрушает их или нарушает их нормальные функции, в результате чего начинаются резкие сокращения мускулов, обусловливающие судороги или конвульсии. Опыленные такими ядами гусеницы очень быстро, иногда в течение нескольких минут после начала опыления, сваливаются на землю, где они попадают в еще худшие условия, так как большая часть яда, как уже указывалось, обычно попадает на землю. После периода судорог начинается паралич, и гусеницы не могут подняться на дерево; сморщиваясь, они постепенно уменьшаются в размере и погибают в течение нескольких часов, иногда этот процесс затягивается до 2-3 дней.

Контактные яды — обычно растительного происхождения. Исходным продуктом для них, кроме целого ряда тропических растений, служит также несколько видов ромашки рода Сhrysanthemum, произрастающих в пределах СССР в диком состоянии и могущих культивироваться в целом ряде районов УССР, Крыма, Северного Кавказа и др.

го вызывает судороги не только у голых, но также и волосистых гусениц и даже у жуков, покрытых крепким хитиновым панцырем. Проникая в организм насекомого независимо от потребления пищи, пиретрин действует непосредственно после опыления, что является особенно ценным его свойством. Авиахимический метод при применении этого яда менее зависит от метеорологических условий, часто сводящих к нулю, в случае применения кишечных ядов, результаты опыления (например, если через несколько часов после проведения операции выпадает дождь или начинается сильный ветер).

Как показали опыты, поставленные в Украинском научно-исследовательском институте апролесомелиорации, применение ромашки дает прекрасные результаты при борьбе с сосновой пяденицей, шелкопрядом-краснохвостом, сосновым пилильщиком и др. Следует отметить, что гусеницы перестают есть сразу же после опыления препаратом ромашки, что особенно важно в случаях опыления сильно объеденных насаждений, когда каждый лишний день имеет значение для сохранения остатков листвы или хвои и, следовательно, для спасения насаждения. Вопрос о дозировках при применении контактных ядов остается пока открытым. Если судить по литературным данным, высокой смертности вредителя можно добиться при расходовании 50-60 кг на 1 га. Если же принять во внимание и проведенные у нас лабораторные опыты, вполне возможно допустить дальнейшее уменьшение указанных дозировок: 92% смертности удавалось получить в случае опыления пиретриновым препаратом из расчета около 20 кг на 1 га даже таких стойких гусениц как шелкопряд-краснохвост пятого возраста. Стоимость готовых контактных инсектисидов, насколько можно судит по данным иностранной литературы, н превышает стоимости кишечных пре паратов. Это позволило в ряде случае борьбы с вредителями леса на значи тельных площадях полностью заменит мышьяковые инсектисиды растительны ми, контактными.

24

13

Токсически действующим началом ромашки являются пиретрины I и II, представляющие собою сложные эфиры, сосредоточенные главным образом в распускающихся и распустившихся цветах ромашки. Количество этих эфиров в ромашке невелико: лучшие образцы содержат около 1,5-1,6% пиретринов. Однако вещества эти чрезвычайно ядовиты; весьма малых следов пиретрина достаточно для оказания действия на насекомых. В опытах с водными насекомыми (Крюгер) судороги у личинок комара Corethra начинались через 1-2 мин. даже при разведении пиретрина в воде в пропорции 1:1000000. Пиретрин является специфическим ядом для насекомых. На растения и других животных он не действует. У человека может вызывать легкое раздражение слизистых оболочек носа, а на кожные покровы действует лишь в исключительных случаях при идиосинкразии. Зато при попадании на поверхность тела насекомо-

В условиях нашей практики замен

Scanned by TapScanner

Очередные задачи химического метода борьбы с вредными лесными насекомыми

ромашкой мышьяковых соединений вполне целесообразна и возможна. Как показал опыт Украинского института экспериментальной фармации, ядовитая ромашка (Chrysanthemum cinerariaefolium L.) может вызревать и давать высококачественный продукт, не уступающий лучшим японским образцам, в климатических условиях Харьковской области на черноземных, супесчаных и серых лесных почвах. Аналогичные результаты получены и при попытках выращивания ромашки в Днепропетровской области, в Крыму. С 1 га 2-3-летней плантации получается урожай в 500-600 кг сухих цветов, не считая листьев и стеблей, которые также содержат небольшие количества пиретри-HOB.

Использование ромашки возможно путем простого размола цветочных головок в порошок; однако в таком виде ромашка идет главным образом для бытовых нужд. Для целей борьбы с вредителями леса целесообразнее экстрагировать из растения пиретрины и затем пропитывать таким экстрактом нейтральные порошки, например диатомовую землю, тальк и др. Полученные препараты могут содержать любое количество ядовитого действующего начала пиретрина, что позволит рационализировать их применение в зависимости от степени стойкости того или другого вредителя.

В условиях нашего планового социалистического сельского хозяйства вполне возможно разведение этого ценнейшего растения в количествах, полностью удовлетворяющих потребности различных отраслей народного хозяйства в инсектисидах контактного действия.

Использование контактных инсектисидов должно получить широкое распространение, так как оно освободит нас от необходимости тратить для борьбы с вредными насекомыми остродефицитный мышьяк, позволит значительно расширить применение химического метода, разрешит проблему ликвидации вредного побочного действия мышьяковых инсектисидов, выражающегося в ожогах растительности, гибели птиц и других мелких животных в опыленных насаждениях, и в то же время исключит опасность отравления человека и домашних животных.

25

Ликвидируем полностью во всех отраслях народного хозяйства последствия вредительства право-троцкистских наймитов иностранных разведок! Превратим СССР в неприступную крепость социализма!

(Из лозунгов к 1 мая 1938 года)

Шире развернем критику и самокритику наших недостатков! Укрепим мощь социалистического государства рабочих и крестьян!

(Из лозунгов к 1 мая 1938 года)

Scanned by TapScanner

ОСНОВНЫЕ ЗАДАЧИ БИОЛОГИЧЕСКИХ МЕТОДОВ БОРЬБЫ С ВРЕДНЫМИ ЛЕСНЫМИ НАСЕКОМЫМИ

И. Д. БЕЛАНОВСКИЙ

В последнее время приобретает особо актуальное значение вопрос об использовании в борьбе с насекомыми, повреждающими лес, естественных врагов их: хищников, паразитов и возбудителей их болезней, т. е. биологического метода борьбы.

Применение этого метода может итти двумя способами: 1) путем насыщения насаждений, повреждаемых размножившимися вредителями, искусственно размноженными лабораторным путем их врагами из местной паразитной или хищной энтомофауны и 2) путем акклиматизации в данном биоценозе отсутствующих в нем по какой-либо причине паразитных или хищных видов, оказывающихся достаточно эффективными врагами данного вредителя в других биоценозах — акклиматизации ввозных паразитных и хищных видов. В первом случае мы имеем применение «живого инсектисида» против уже размножаюшегося вредителя, т. е. чисто истребительное действие; во втором - преследуются преимущественно профилактические цели: предупреждение массовых размножений вредителя его акклиматизованным и естественно размножающимся врагом. В области применения методов «насыщения» биоценозов местными естественными врагами вредителей должно нанти в лесном хозяйстве широкое применение использование яйцеедатрихограммы, уже, можно считать, освоенное сельскохозяйственной энтомологией и осуществляемое не только опытными станциями, но и многими. хатами-лабораториями в борьбе против таких массовых вредителей, как озимая совка и луговой мотылек.

методика выпуска трихограммы в лес (количество паразита, выпускаемое на единицу площади, размер отдельных колоний, размещение их, время выпу, ка, стадия развития, на которой выпу, скается паразит) должна еще быть раз. работана, так как условия распростра. нения трихограммы в лесу, конечно, со. всем иные, чем в поле, и в этом отношении лесному хозяйству, вероятно, придется встретиться с значительными затруднениями.

Несмотря на свою чрезвычайную многоядность, трихограмма все же не может быть использована против некоторых важных лесных вредителей; во-первых, против тех, у которых яйца покрываются пушком с брюшка самки или особым выделением половых желез последней (непарный шелкопряд, златогузка, ивовая волнянка), и, во-вторых, против тех, чьи яйца откладываются всегда под пологом леса в достаточно густом затенении (монашенка и др.). Трихограмма является, в общем, насекомым тепло- и светолюбивым, держащимся по преимуществу в хорошо освещенных частях кроны. Сообразно с этим трихограмма может быть использована с надеждой на успех лишь против вредителей, откладывающих яйца в кроне (сосновая совка, сосновая пяденица, сосновый шелкопряд). Однако яйца, откладываемые ранней весной, когда еще бывает холодно, как, например, яйца сосновой совки, сравнительно слабо поражаются трихограммой.

Методика массового лабораторного размножения трихограммы может быть целиком позаимствована у энтомологов, сельскохозяйственников наших, а также заграничных опытных станций¹. Но Ввиду этого наибольший эффект даст использование трихограммы против сосновой пяденицы и соснового шелкопряда, поскольку последний часто откладывает яйца не на стволах, а на хвое. В борьбе с пилильщиками, лица которых находятся в ткани хвоинок, применение трихограммы сулит мало успеха.

Велленштейн в Германии пытался использовать в борьбе с сосновой совкой американскую трихограмму (Trihogramma minutum Riley), но полу-

Scanned by TapScanner

¹ См., например: Spencer Herb. New equipment for obtaining host material for the mass production of Trich gramma minutum.

U. S. Dep. Agr. Circ. 376. Decemb. 1935.

Основные задачи биологических методов борьбы с вредными лесными насекомыми

чил совершенно отрицательные результаты. Европейская трихограмма (Trihogramma evanescens Westw) оказалась и активнее и выносливее в отношении климатических условий, чем ее американская родственница, широко применяемая, впрочем, у себя на родине.

Нужно иметь в виду однако, что на яйцах ласных вредителей паразитируют имеющие большее распространение в лесу, чем трихограмма, собственно лесные яйцееды — проктотрупиды из сборного рода Telenomus, теперь разбитого на много родов. Ими главным. образом уничтожаются яйца соснового шелкопряда, краснохвоста и других лесных вредителей. Но ни способы лабораторного размножения этих весь. ма распространенных паразитов лесных вредителей, ни самая возможность их лабораторного размножения совершенно не исследованы, и здесь открыто широкое поле для исследовательской работы. В отношении непарного шелкопряда также имеются, повидимому, широкие перспективы применения биологического метода борьбы. При осуществлении грандиозного опыта борьбы с завезенными в США непарным шелкопрядом и златогузкой было размножено и колонизовано в местах, наиболее утрожаемых по непарному шелкопряду, свыше 65 млн. шт. евпельмида (Апаstatus disparis Rusch)¹, сыправшего колоссальную роль в остановке движения непарного шелкопряда по территории штатов. Этот яйцеед вывюзился американцами в 1906 г. отчасти из приднестровских районов, а теперь он выведен в больших количествах И. С. Аверкиевым в Иошкар-Ола (Марийская республика).

a-

ка

Μ,

Μ,

0-

0-

ет

Ia

Этот яйцеед заражал, по данным Мокржецкого, до 85% яиц непарного шелкопряда в Крыму.

27

В отношении этих обоих яйцеедов непарного шелкопряда должна быть также проведена широкая исследовательская работа как по методу насыщения ими местностей, где они хотя и имеются, но представлены в недостаточном количестве, так главным образом по методу массовой акклиматизации их там, где они отсутствуют в юсоставе местной фауны, а климатические условия создают предпосылки к возможной их акклиматизации.

Благодаря работам английской лаборатории по применению биометода в Farnham-House были проведены две удачные операции по борьбе с пилилыциками, повреждающими хвойные породы. Первая, закончившаяся полным успехом еще в конце 20-х годов, состояла во ввозе в Канаду и акклиматизации там ихневмонида Mesoleius tenthredinis Motl для борьбы с лиственничным пилильщиком—Lygaeonematus erichsoni Htg. Вторая операция, начатая в 1934 г., состояла во ввозе тоже в Канаду хальцида Microplectron fuscipennis Zett для борьбы с чрезвычайно размножившимся там пилильщиком Diprion polytomum Htg. Хальцид отлично прижился на новой родине, и операция также сулит полный успех в ближайшем будущем. Следует отметить, что названный хальцид был найден и у нас в больших количествах на украинском левобережье и затем в БССР. Хальцид оказался весьма энергичным врагом пилильщиков из рода Diprion. Он распространен от Далмации до Лапландии и на восток до верховьев Донца, в средней Европе дает четыре генерации в год, выводясь в количестве до 70 шт. из сдного кокона пилильщика. При температуре 23 и 80° Ц и относительной влажности все развитие от яйца до яйца длится 15-18 дней. Среднее соотношение числа самцов к числу самок 1 : 4. Самка откладывает до 120 яиц в коконы пилильщиков. Таким образом, имеется налицо много данных, указывающих на возможность массового лабораторного размножения этого паразита пилильщиков и использования его как ме-

Другим весьма энергичным яйцеедом непарного шелкопряда является выведенный в 1908 г. в Крыму Мокржецким проктотрупид — Hadtonotus howardi Ogl².

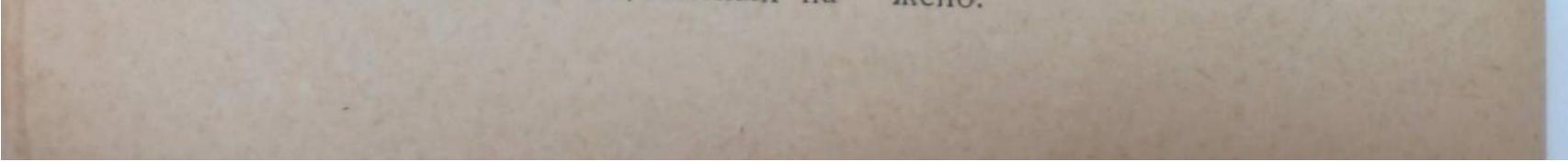
² Про эту выводку Мокржецкий сообщил в печати только в 1931 г. в журн. «Pismo polskie entomologiczne».

Scanned by TapScanner

¹ Сначала предполагалось, что это Anastatus bifasciatus Fonc., но затем было выяснено, что это другой, близкий вид — Anastatus disparis Rusch

И. Д. Белановский

тодом насыщения, так и методом акклиматизации там, где он отсутствует.


Работами Белорусского научно-исследовательского института лесного хозяйства (Рывкин) выясняется возможность лабораторного размножения и использования в борьбе с пилильщиком ихневмонида Gambrus adustus Grav.

Несколько хуже обстоит дело с использованием крупных наездников и тахин. Для лабораторного разведения многих видов встречаются серьезные препятствия. Многие виды отказываются в неволе спариваться и отклады. вать яйца. Но главное препятствие заключается в трудности обеспечить лабораторию в нужные моменты надлежащим количеством экземпляров «хозяина» (например гусениц вредителя) для выводимого паразита. Особенно трудна эта задача для специфических паразитов, тесно связанных с одним определенным хозяином или с несколькими близко родственными видами. Такой является, например, тахина Phorocera silvestris R. D., тесно связанная с монашенкой и непарным шелкопрядом. Значение этой тахины в сокращении массовых размножений обоих указанных вредителей громадно; иногда она действительно прекращала массовые размножения монашенки, но в периоды отсутствия этих вредителей найти хозяев для лабораторного размножения этой тахины так же трудно, как и найти в природе самую тахину, тесно связанную с монашенкой и непарным шелкопрядом и исчезающую вместе с ними. Несколько лучше обстоит дело с многоядными тахинами, для которых всегда можно найти того или иного хозяи. на. Иногда многоядные тахины в периоды массовых размножений отдельных вредителей оказывают значительную услугу в деле сокращения числа вредителей, как это бывает, например, чрезвычайно многоядной тахиной Lydella nigripes Fall в отношении сосновой пяденицы; в отсутствие ее названная тахина может разводиться почти на любом виде гусениц.

секомых едва ли сулит здесь большов успех. Правда, в литературе существуюя указания (Тарнани, Масловский, Росси ков) на сплошное вымирание хрущей в б. Уфимской губ. и в других местах пол действием тахин из подсемейства Dexiinae, однако во всех этих случаях осталось непроверенным, не было вымирание хрущей результатом совме. стного действия паразитных мух и эпи. зоотий, иногда поражающих в массе ли. чинки пластинчатоусых. Автору настоя. щей статьи приходилось видеть наибо. лее энергичного врага личинок хру. щей—хрущеедку (Microphthalma disjuneta Wied) в промадных количествах; ею бы. ли сплошь покрыты цветы росших в большом количестве зонтичных, но тем не менее в почве данной местности бы. ло в среднем 3-4 взрослых личинки пластинчатоусых на 1 м². Такая сравнительно малая успешность действия мух. паразитирующих на личинках, живущих в земле, объясняется тем, что личинки этих мух должны сами отыскивать хозяина в земле, что, очевидно, далеко не всегда удается этим ничтожно мелким существам, вследствие чего очень большой процент их осужден на гибель. При сравнительно умеренной плодовитости дексий это приводит к тому, что роль их в ограничении размножения пластинчатоусых юстается в большинстве случаев все-таки скромной. В еще большей степени сказанное относится к другой пруппе паразитов личинск пластинчатоусых - к осам сколиям. Неисследованным остается значение паразитных нематод, иногда сильно размножающихся в почве и причиняющих опустошения среди личинок пластинчатоусых. Иногда заражение этих личином нематодами принимает эпидемический характер, как об этом, например, сообщал Дэвис еще в 1919 г. В 1929 г. Глэзер и Фаррель в Нью-Джерси обнаружили массовое истребление паразитной нематодой (Neoaplectana glaseri) личинок важного вредителя плодоводства 11 семейства пластинчатоусых, так называемого японского жука. Авторы сделали увенчавшуюся успехом попытку искусственного заражения почвы немато. дой, в результате чего количество лич! нок японского жука было сильно сни жено.

28

Что касается борьбы с вредителями, живущими в почве, в первую очередь с личинками пластинчатоусых, искусственное использование паразитных на-

Scanned by TapScanner

Основные задачи биологических методов борьбы с вредными лесными насекомыми

Если в отношении таких мелких и легко размножаемых в искусственных условиях врагов лесных вредителей, как паразитные насекомые, паразитные микроорганизмы, нематоды, может быть во многих случаях с успехом примене-XR но лабораторное их размножение, то IH едва ли этот метод может быть использован в отношении вратов лесных вре-IHдителей из числа позвоночных. В отно-14шении полезных птиц могут и должны -RC быть широко использованы способы 0привлечения максимального количества IVих путем обеспечения для них подходяeta щих условий гнездования, что дости-Ыгается созданием по возможности мно-B гоярусных насаждений с густым подлеем ском. Особенно полезными являются bIмелкие насекомоядные птицы (синицы, KM поползни, пищухи, корольки и пр.), -HI истребляющие промадное количество яиц вредных насекомых. Но такие ме-УX, ИХ как расстановка искусственных ры, гнезд (скворешен), могут быть рента-КИ бельны разве в питомниках, плантациях NOакклиматизируемых пород, степных поне ИМ лезащитных полосах и т. п. Если в области биологических мето-ЛЬдов борьбы уже сделано кое-что в от-ЛЬ. ношении искусственного использования ВИпаразитных и хищных насекомых, то в OTP области использования патогенных мик-RNE роорганизмов, причиняющих эпизоотии H-H у вредных насекомых, не достигнуто ше пока, практически говоря, никаких ощу-K тимых результатов, несмотря на то, что пав этой области работали такие выдающиеся ученые, как Мечников. Между ме тем кому приходилось хоть раз видеть, a'3какие страшные, протекающие с молние-NX носной быстротой опустошения среди 42размножившихся в массе вредителей OK причиняют их болезни, принимающие ИЙ эпидемический характер, тот не может 06отрешчиться от мысли о том, что если 19бы человек овладел кпособом искусст-DVвенно, по своей воле распространять эти ОЙ болезни среди вредителей, то никаких IOK иных способов борьбы более не пона-113 добилось бы. ы-Так как в лесных условиях часто охва-12тываются вредителями такие громадные ICсплошные площади, и вредитель скоп--07 ляется в таких плотностях, какие редко INвстречаются в полевых условиях, токак 111раз для леса вопрос об использовании

OR

OT

1-16


B

LC

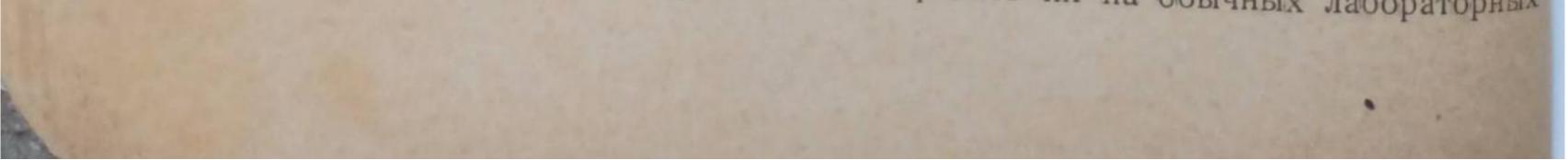
Ba

le -

патогенных микроорганизмов в борьбе с вредными насекомыми является наиболее актуальным. Именно поэтому в лесной литературе (особенно немецкой) было предложено много способов распространения болезней между вредными насекомыми, но способов или совершенно неосуществимых по своей трудоемкости и дороговизне, или явно нелепых. Предлагалось накалывать гусениц иглой, смоченной жидкостью, выдавленной из больных гусениц, и пускать наколотых таким образом тусениц в те участки леса, где заболеваний вредителей еще не было; предлагалось заражать конину жидкостью из больных гусениц и развозить зараженную конину по лесу; предлагалось вагонами перевозить лесную подстилку из мест, где гусеницы болеют, в места, где они еще не болеют; предлагалось погибших от болезни гусениц сушить, молоть и полученную муку путем выстрелов из особых мортирок направлять в кроны деревьев, заселенных здоровыми гусеницами, и т. д. Такое обилие проектов использования болезней вредных насекомых в борьбе с ними не удивительно: все или почти все массовые размножения монашенки прекращались эпизоотиями — «вершинной болезнью» гусениц; эпизоотиями же заканчивались большею частью вспышки массовых размножений сосновой совки и пяденицы. Но эпизоотии приходили на выручку лесному хозяйству обычно слишком поздно, когда вредитель уже успевал погубить десятки тысяч гектаров леса. Сельскохозяйственная энтомология тоже прилагала большие усилия к использованию болезней вредителей в борьбе с ними (например в борьбе с кукурузным мотыльком), но и здесь пока не достигнуто значительных результатов. Правда, Д'Эррель с большим успехом применял в Южной Америке в борьбе с саранчею возбудителя ее массовых заболеваний, но повторить опыт Д'Эрреля с таким же успехом никому пока не удалось. Болезни, встречающиеся у насекомых и принимающие характер эпизоотий, могут быть разделены на следующие группы: 1) болезни грибного проис-2) болезни, вызываемые хождения;

Scanned by TapScanner

И. Д. Белановский


бактериальными возбудителями; 3) болезни, причиняемые протозойными возбудителями, и 4) болезни, вызываемые ультравирусами (цитотропными, фильтрующимися вирусами). Из первой группы наибольший интерес для лесовода представляют болезни, причиняемые энтомофторовыми грибами, например грибом Empusa aulicae Reich у гусениц сосновой совки. Этим грибом в несколько дней было ликвидировано в 1924 г. громадное нашествие сосновой совки в Польше, охватившее Познанскую область и польскую Померанию. Однако исследователям, изучавшим болезнь (Гарбовский), не удалось ни искусственно получить лабораторным путем споры гриба, ни вызвать заражение гусениц разных бабочек спорами, полученными в природе из убитых грибом гусениц сосновой совки. При лабораторных разводках получались конидиальные формы плодоношения, не пригодные для долговременного хранения. Равным образом окончились лишь частичным и весьма скромным успехом попытки наших и заграничных ученых искусственно распространять в почве грибные заболевания, которыми болеют в природе личинки вредных насекомых, живущие в почве, например личинки пластинчатоусых, личинки свекловичного долгоносика. Эти личинки болеют грибными заболеваниями, объединяемыми под общим названием мюскардин (белая, зеленая, красная и другие мюскардины). Исследователи сравнительно легко получали лабораторным путем большие количества спор соответствующих грибков, но внесение их в почву давало обычно лишь слабое повышение процента зараженных личинок, не оправдывавшее затраченных на лабораторную работу расходов. Однако ни в какой мере нельзя признать положение в этом отношении безнадежным. Вполне возможно, что дальнейшие исследования дадут возможность выяснить причины предыдущих неудач, которые вероятно, кроются в том, что споры вносились в почву в ненадлежащее время, на ненадлежащую глубину и т. п.

23

у насекомых такое молниеносное распространение и течение, как болезни грибного происхождения или ультра. вирусные. Некоторый успех, достигну. тый в области искусственного исполь. зования этих болезней (против куку. рузного мотылька), объясняется тем. что среди бактериальных возбудителей болезней имеются спорообразующие формы. Образуемые ими споры могут сохраняться долгое время (несколько лет) и легко заражают здоровых насекомых. Смешанные с тонко измельченными нейтральными веществами (например с тальком) они образуют дэсты (dusts) — порошки, которые могут быть распылены при помощи аэроплана или наземных распылителей над зараженными вредителями культурами с целью вызвать массовые заболевания вредителя. Нет оснований сомневаться, что такие спорообразующие бактерии могут быть выделены и из лесных вредителей и использованы для искусственного заражения последних. Болезни протозойного происхождения распространены сравнительно мало, но если случаются, то причиняют эпизоотии большой силы; в литературе описаны Цвольфером такие заболевания у непарного шелкопряда и златогузки. Они причиняются микроспоридиями, принадлежащими к родам, близким к возбудителю так называемого нозематоза пчел; автором настоящей статьи подобное заболевание обнаружено у гусениц яблонной моли. Дальнейшие исследования в данной области должны наметить пути возможного использования возбудителей болезней этого рода. Наиболее опустошительные, молниеносно протекающие и распространяющиеся эпизоотии насекомых причиняются ультравирусами. Сюда принадлежат, например, так называемая вершинная болезнь монашенки, желтуха шелковичного червя; болезни подобного рода отмечены также у сосновой совки, сосновой пяденицы, непарного шелкопряда, златогузки, рыжего пилильщика и др. (Эшерих). Главным препятствием в искусственном использовании возбудителей этого рода являлась до сих пор невозможность культивировать их на обычных лабораторных

30

Болезни бактериального происхождесравнительно редко принимают ния

Scanned by TapScanner

Остовные задачи биологических методов борьбы с вредителями леся -

средах; культивировать их приходилось только на живой, растущей ткани - в тканевых культурах, что представляло необычайные затруднения, и лишь в последнее время (в августе 1937 г.) появилось сообщение наших исследователей проф. Зильбера и Воструховой о том, что ими открыт способ культивирования ультравирусов человска (вируса оспы) на дрожжах. В свете этого открытия становится понятным опыт проф. Поспелова, который пытался культивировать на лабораторных средах вирус, полученный из больных гуссниц монашенки, и получил культуру дрожжей из рода Debaryomyces; заразив этой культурой гуссниц капустной совки, проф. Поспелов получил заболевание у 50% зараженных гусениц.

Вторым препятствием при опытах искусственного лабораторного культивирования болезней вредных насекомых была и пока остается невозможность усиления вирулентности (заразительности) болезнетворных начал теми способами, какие применяются для усиления вирулентности возбудителей болезней теплокровных животных. Способы эти заключаются в так называемых «пассажах» — операции, заключающейся в том, что вирус прививают здоровому животному, после его заболевания берут у него кровь, прививают следующему здоровому, по заболевании этого его кровь прививают новому животному и т. д. Каждый такой пассаж у теплокровных животных увеличивает за немногими исключениями вирулентность заразного начала;

у насекомых же в результате пассажей получаются большей частью совершенно неопределенные результаты: вирулентность заразного начала то возрастает при пассажах, то вдруг резко падает без видимой причины. Для распространения заразы среди насекомых нужно, чтобы заразное начало обладало высокой вирулентностью, так как пища и воспринятое с нею заразное начало сравнительно очень быстро проходит через пищевой тракт насекомого и выбрасывается наружу.

31

Таким образом, мы видим, что на путях практического применения биологических методов борьбы стоит еще много препятствий и имеется много не разрешенных пока вопросов основного порядка. Если сельскохозяйственной энтомологией некоторые из этих вопросов уже разрешены, в лесной энтомологии в этом отношении сделано пока очень мало. Между тем размножение вредных насекомых с большими заселения широким плотностями И охватом площадей чаще всего наблю-

дается именно в лесу.

Однако нет никаких оснований утверждать, что препятствия, встречающиеся на пути практического применения биологических методов борьбы с вредителями леса, непреодолимы; наоборот, условия исследовательской работы в нашем Союзе создают все предпосылки для преодоления этих препятствий, и они, конечно, будут преодолены, и в конечном результате биологические методы борьбы войдут в круг мероприятий по защите леса.

Scanned by TapScanner

ПРИМЕНЕНИЕ САМОЛЕТА ДЛЯ БОРЬБЫ С ВРЕДНЫМИ ЛЕСНЫМИ НАСЕКОМЫМИ

Г. И. КОРОТКИХ

Азведановню-химический метод борьбы с вредителями леса применяется в лесном хознастве СССР, начаная с 1926 г. (узинчтолкение грызущах илсекомых путем распыления с самолета вышьяковыстых препаратов). Эффективность этого метода уже проверена на практике при уничтожении гусениц монашенка, сосновой совки и соснового шелкопряда, сибирского и непарного шелкопряда, сосновой пяденицы, дубовой листовертки, златогузки и других вредителей леса.

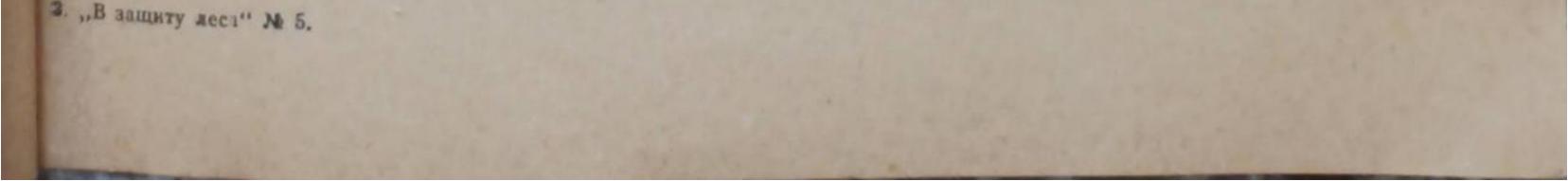
Технически возможная производипри обработке тельность самолета участка леса, находящегося в 3 км от полевого аэродрома, достнгает 80 га в час. в то время как производительность самых мощных наземных машин (автомобыльные опыливатели и опрыскиватели) не превышает 2 га в час при обязательном условии прохождения этих машины по лесу. Проходимость машины в лесу играет решающую роль при выборе способа борьбы с вредными насевомыми. Самолет, передвигающийся по воздуху, имеет громадное преимущество перед наземными машинами. Простота обслуживания самолета, небольшое количество необходимых рабочих для этой цели и относительная дешевизна его эксплоатации (на единицу обрабатываемой площали) являются предпосылками для самого широкого использования самолетов при защите леса от вредителей. Между тем общий объем работ по применению самолетов для этой цели в СССР еще очень мал и измеряется пока площалью в пределах десятка тысяч тектаров в год (за последние 10 лет самолетами обработано около 70 тыс. га; нанбольшая площадь была охвачена в 1935 г. — 17 тыс. га). Еще более разительная картина получится, если сравнить объем работы самолетов по борьбе с вредителями сельского и лесного хозяйств. Так, например, в сельском хозяйстве самолеты обрабатывают ежегодно 300-400 тыс. га при борьбе с саранчей, 100-150 тыс. га-при защите хлопчатника и т. д., причем на этих работах широко используются и наземя

Авиационный метод необходимо четать с наземными способами боры Самолет следует использовать в перв очередь для обработки крупных ра стков (не менее 50 га), после чего изог остаются небольшие участки леса, гру пы деревьев и отдельные деревья, р положительный эффект авиахимическ го метода не достигается по целому р ду причин: снос пылевой волны, в ровный рельеф местности, перебон работе опылителя и т. д. В этих случ ях, как правило, дочистку надо пров водить наземными способами, начие от моторных или тракторных опыла лей и кончая сбором гусениц вручнух Только такое сочетание всех способо позволит радикально и наиболее деше освобождать лес от вредных населя мых. К сожалению, в практике нати лесхозов и леспромхозов наблюдаютс крайности: или используется только с молет, что приводит к необходимост повторных обработок в последующи годы и удорожанию стоимости общ ботки, или используются примитивные наземные способы, которые в условия лесного хозяйства оказываются в боль шинстве случаев паллиативами, Перейдем теперь к вопросу о действии отравляющих веществ. Пракция работ показывает, что наибольший про цент смертности от действия яда наблю дается среди более молодых гусениц, поэтому целесообразно начинать опы ливание непосредственно после оконча ния массового выхода гусениц из я и заканчивать в течение 12-15 дней. Серьезным препятствием для шир. кого использования химических м тодов борьбы с вредителями леса я ляются дороговизна и недостаток ядо. Необходимо отметить, что вопротоксикологического порядка в леся прикладной энтомологии не нашли п ка широкого освещения. В настоящи время в практике защиты леса при няющийся ассортимент ядов ничтох (мышьяковистокислый кальций, крем фтористые натрий и барий), а дозиров

Scanned by TapScanner

Применение самолета для борьбы с вредными лесными насекомыми

ядов стандартны. Все это приводит к напрасной затрате и ядов и денежных средств. Научно-исследовательской работе в области выбора ядов, разработки технических требований к физикохимическим свойствам их, установлению дозировок и т. п. уделяется мало внимания. Поэтому не только лесопатологи-практики, но и работники научноисследовательских институтов в большинстве не владеют методами химического анализа для полевых и лабораторных условий и имеют слабое представление о физиологии действия ядов на насекомых.


Между тем стандартная дозировка ядов до сих пор научно не обоснована. Снижение дозировки яда, увеличение прилипаемости яда к кроне деревьев путем добавления масляных препаратов могут резко снизить стоимость обработки каждого гектара леса.

В настоящее время самолеты могут быть оборудованы не только аппаратами для распыливания порошкообразных ядов, но и аппаратами для опрыскивания растворами или чистыми жидкими ядами. Так, например, опрыскиватель конструкции инж. В. Степанова, установленный на самолете, дает очень тонкое распыление жидкости (диаметр частиц жидкости 150-200 микронов), что, с одной стороны, резко сокращает общий расход жидкости на единицу площади, а с другой — увеличивает прилипаемость яда к поверхности растений. Этот аппарат позволяет применять концентрированные растворы ядов или даже чистые яды. После пролета самолета вся растительность окутывается ядовитым облаком — туманом, обволакивающим растение со всех сторон. Здесь опять потребуется проведение серии опытных работ по изучению действия различных ядов и эмульсий на вредных и полезных насекомых и раститель-НОСТЬ. Возможно, что по этому пути следует итти при отыскании методов борьбы с жуком майского хруща, который, по наблюдениям В. Циопкало, гибнет от мышьяка, но отказывается от пищи с крупными частицами яда. В данном случае не исключена возможность опрыскивания зараженных участков концентрированным «раствором» парижской зелени, причем этот способ уменьшит разнос яда по воздуху и увеличит прилипаемость и удерживаемость мельчайщих частиц яда на листовой поверхности.

Производственные организации крайне заинтересованы в разрешении научно-исследовательскими институтами указанных вопросов в кратчайший срок.

Значительный интерес как для науки, так и для практики представляют также вопросы технического нормирования авиационных работ. В условиях сельского хозяйства организация работы самолета и техника нормирования уже достаточно полно изучены и особых трудностей не представляют. При организации работы самолета в лесном хозяйстве вопросам технического нормирования, а следовательно и борьбе за повышение производительности самолета, пока еще не уделяется должного внимания. Это обстоятельство затрудняет планирование и усложняет выявление действительной экономической эффективности применения самолета. Лесопатологи, организующие применение самолета в лесу, еще не приобрели навыка и не обладают достаточными знаниями для правильной расстановки сил на аэродроме и на участке для максимальной экономии времени при обслуживании самолета на земле и при полете в воздухе, для корректирования правильности полета над участком и т. д. Необходимо в ближайшее время организовать курсы по повышению знаний лесопатологов в области авиахимических способов борьбы с лесными вредителями. Недостаток опытных кадров по применению самолета в условиях леса является одним из серьезных препятствий, тормозящих широкое развертывание авиахимических работ. Малоопытных людей подчас пугают организационные трудности, с которыми они могут встретиться на практике, а отсюда нерешительность в использовании высокой техники и применение кустарных способов.

Необходимо освоить самолет как мощную машину для защиты леса и форсировать разрешение вопросов применения механизации в борьбе с вредителями леса.

Scanned by TapScanner

О ПРЕДСТОЯЩЕЙ ВСПЫШКЕ МАССОВОГО РАЗМНОЖЕНИЯ СОСНОВОЙ ПЯДЕНИЦЫ И СОСНОВОЙ СОВКИ

А. И. ИЛЬИНСКИЙ

Поторные лесолацииты свидетельствует в том, что вельники массового размножения (инвазии) в обнаруживаются хозинствующими организациями только тогда, когда первичные вредители успенают окватить аначительные, а подчас опроменые территорны леса и причинить ему в той нан иной мере вред. Это затрудатет сорьсу, сильно польшает се CIMIMOCTE, VMCHIMIACT IF JANCE CHOJHT. начиет се эффективность. Нанесенные масскомыми повреждения влежут за сооой потери на приросте и плодоношеним, а в хвонных насаждениях приводать к частичному или полному усыханию юбъеденных древостоев.

Причиной запоадалого обнаружения вспышек массоного размножения первичных вредителей следует считать отсутствие надлежаще организованного. надзора за их размножением в лесах и невозможность прогноза их инвазий. Однако, если вопрос о прогнозе инвазий в целом остается до сих пор не изученным, то надзор за размножением массовых первичных вредителей в лесах возможно было бы осуществлять уже и теперь. Нам хотелось бы на примере с сосновой пяденицей и сосновой совкой иллюстрировать возможность осуществления подобного надзора, Однако для обоснования последнего следуст вкратце остановиться на вопросе оо ниназнях вообще. Инвазии первичных вредителей с чисто внешней, формальной стороны можно свести к колебаниям численности вредителей, или, что то же, к колеоаниям плотности их поселений в насаждениях за отдельные годы. Из года в год и от насаждения к насаждению численность предителей никогда не остается постоянной, Согласно Ченману в колебания численности выражаются следующей форму-JOA:

$$C = \frac{(A \cdot \beta \cdot Z)^n}{Er},$$

L'AGI

С - численность вредителя;


- А-число его особей-производителей;
- β соотношение между численностью самок и самцов;
- Z потенциальная производительность (плодовитость одной самки);
- п число поколений (генераций), которое дает данный вредитель в течение одного года;
- Er-сопротивление среды¹.

Числителю приведенного математического выражения Чепман дает наименование «биотического потенциала». Отсюда численность вредителя прямо пропорциональна биотическому потенциалу и обратно пропорциональна сопротивлению среды. Иными словами, численность обусловливается способностью вредителя, как и всякого живого организма, к беспредельному размножению и тем пределом, который ставит окружающая среда этому размножению в данных конкретных условиях обитания вредителя, С нашей точки зрения входящие в состав чепманского выражения величины не постоянны, а изменяются из года в год и от насаждения к насаждению, кроме величины п.

Число производителей, говоря теоретически, тем выше, чем более условия насаждений соответствуют экологическим особенностям данного вида вредителя.

Соотношение между числеяностью самок и самцов у одних видов первичных вредителей остается более или менее постоянным и близким к единице (например у сосновой совки, по данным

¹ Формула Чепмана приводится нами для облегчения изложения. С своей стороны мы считаем, что при современном состоянии на них внаний не представляется возможны охватить формулами неизученные, сложнейши и притом динамичные процессы размножени вредителей. Тем более нельзя пользонаться подобными формулами для вычислений.

Scanned by TapScanner

[«] Веньшики массовых размножений в настоянее время принято именовать градациями, энафитними, агли инвазними.

и Патируем по Gracham "Principles of Forest Entomology", 1929 г.

О предстоящей вспышке массового размножения сосновой пяденицы и сосновой совки 35

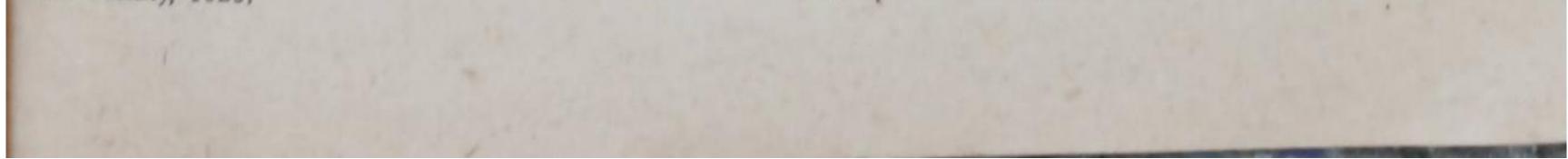
Экштейна', Захтлебена' и нашим). У других видов первичных вредителей опо колеблется в довольно широких пределах. В начале инвазий и в слабо заселенных насаждениях доминируют самки, в конце инвазий и в перенаселенных очагах преобладание переходит на сторону самцов. Так, в 1931 г. в слабо заселенных непарным шелкопрядом насаждениях в Крыму куколки самок составляли 57%, а в объеденных насаждениях — 15%, в 1932 г. — 36 и 15%.

Производительность (плодовитость) по нашим исследованиям, также колеблется у отдельных особей самок одного и того же вида:

Сосновый шелкопряд . . от 17 до 300 яичек Непарный шелкопряд . . " 1 " 768 " Краснохвостый шелкопряд " 8 " 727 " Сосновая совка " 0 " 289 " Сосновая пяденица . . . " 70 " 241 яичка Сосновый пилильщик . . " 39 " 171 "

В начале инвазий и в слабо заселенных насаждениях плодовитость самок в среднем стоит на высоком уровне, в конце же инвазий и в перенаселенных очагах она резко падает. Так, например, средняя плодовитость самки непарного шелкопряда в Крыму достигала в 1931 г. 402 яичек, в 1932 г. - 162 и в 1933 г. — 15 янчек. В 1932 г. плодовитость одной самки непарного шелкопряда в Крыму в среднем достигала в слабо поврежденных насаждениях 214 яичек, в средне поврежденных - 130 и в сильно поврежденных — 71 яичка. О плодовитости отдельных особей вредителя с достаточной для производственных целей степенью точности можно судить уже по весу куколок или бабочек, так как между весом и плодовитостью существует высокая сопряженность, определяемая коэфициентом корреляции. Так, например, вес куколок у сосновой пяденицы колеблется от 70 до 220 мг, а у совки-от 84 до 415 мг. Коэфициент корреляции между весом куколок и плодовитостью выходящих из них бабочек равен у пяденицы +0,96,

а у совки + 0,87. При увеличении веса куколок на 1 мг плодовитость особей в среднем возрастает, по нашим данным, у соснового шелкопряда на 0,06 яичка, у непарного шелкопряда — на 0,37, у сосновой совки — на 0,89, у сосновой пяденицы — на 1,12 и у соснового пилильщика — на 0,8 яичка.


Зная средний вес куколок, собранных, например, при обследовании насаждений, мы можем определить с достаточной для практических целей степенью точности среднюю плодовитость будущих бабочек. Так, например, у сосновой совки куколки весом менее 139 мг дают бесплодных особей, а приращение в весе на 1 мг, как указывалось выше, дает приращение плодовитости на 0,89 яичка. Отсюда, если собранные куколки весят, например, в среднем 306 мг, то плодовитость вылетающих из них бабочек будет равна (306—139) 0,89 = 149 яичкам в среднем.

Однако и само по себе приращение плодовитости на 1 мг живого веса так-

же изменяется. Оно подвержено той же закономерности, как изменение веса и плодовитости вредителей. Так, например, в Забельем бору Нежинского лесхоза при затухании инвазии пяденицы в 1932 г. приращению в весе куколки на 1 мг соответствовало приращение плодовитости в среднем на 0,95 яичка. В 1937 г., в начале инвазии в левобережной даче Воронежского лесокультурного института, приращению в весе куколок той же пяденицы на 1 мг соответствовало приращение плодовитости в среднем на 1,2 яичка.

В 1931 г. в Изюмской даче того же лесхоза в насаждениях, полностью объеденных сосновой совкой, приращение в весе ее куколки на 1 мг давало приращение плодовитости в среднем на 0,64 яичка, тогда как в насаждениях, объеденных только на 10%, приращение достигало в среднем 0,97 яичка. Таким образом, в начале инвазий и в слабо заселенных насаждениях вес и плодовитость вредителя стоят на высоком уровне, и организм вредителей работает более продуктивно, давая значительно более высокое приращение плодовитости, отнесенное к единице живого веса.

Говоря об изменчивости плодовито-

Scanned by TapScanner

¹ K. Escherich, Die Forstinsekten Mitteleuropas, 1931, r. 3.

² H. Sachtleben, Die Forleule (Panolis flammea Schiff), 1929,

А. И. Ильинский

сти, следует напомнить, что большинство видов первичных вредителей леса во взрослой стадии не питается, а некоторые из них имеют даже недоразвитые ротовые органы. Плодовитость массовых первичных вредителей в значительной мере зависит, таким образом, от условий их питания в стадии гусеницы, а так как эти условия изменяются из года в год и от насаждения к насаждению, то и плодовитость первичных вредителей колеблется в огромных пределах.

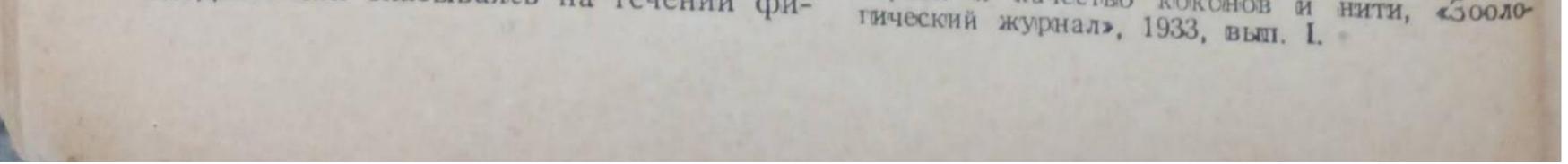
Количество поколений (генераций) в году у массовых первичных вредителей леса остается постоянным. Большинство из них, исключая соснового пилильщика, дает одно поколение в год, и отсюда в формуле Чепмана показатель степени n=1.

Окружающим сопротивлением среды именуют комплекс тех ее факторов, которые влияют на численность вредителей. Все они могут быть разбиты на три группы: абиотические, биотические и физиологические факторы.

зиологических процессов у древесных пород.

Ко второй группе биотических факторов относятся факторы живой природы: хищники, паразиты и болезни, уничтожающие вредителей, а также межвидовая и внутривидовая конкуренция между отдельными особями вредителей за пищу и место гнездования. Эту группу факторов Цвельфер расценивает как зависимую, имеющую вторичное эпидемиологическое значение, поккольку степень влияния ее на численность вредителей зависит от густоты поселения вредителя самого по себе и от жизнеспособности его особей.

Эпидемиологическое значение эти факторы, особенно болезни вредителей, приобретают в большинстве случаев только тогда, когда численность вредителей достигает значительных размеров и на почве недоедания или иных причин падает их жизнеспособность. Действительно, массовая гибель вредителей от этих факторов чаще всего


36

К пруппе абиотических факторов относятся физические факторы неживой природы: климатические и почвенногрунтовые, связанные с рельефом местности. Согласно Цвельферу абиотические факторы имеют первичное эпидемиологическое значение, поскольку они оказывают наиболее сильное прямое и косвенное влияние на численность вредителей, причем это влияние не зависит от численности самого вредителя. Особенно резко влияют климатические факторы. Прямое влияние их заключается в том, что при неблагоприятных условиях погоды питание вредителей протекает вяло, с перерывами, тормозятся физиологические процессы, задерживается развитие, многие особи гибнут. Благоприятные условия погоды оказывают обратное влияние, приводя в конечном итоге к увеличению численности вредителей, повышению их жизнеспособности и плодовитости. Косвенно погода может влиять на численность вредителей, содействуя сокращению или увеличению численности паразитов, хищников и болезней, уничтожающих вредителей, благоприятствуя или не благоприятствуя жизнедеятельности последних или сказываясь на течении фи-

наблюдается под конец инвазий.

Третья группа физиологических факторов оказывает скорее косвенное, чем прямое влияние. Сюда должны быть отнесены неизученные свойства листвы и хвои древесных пород как пищи вредителей. Уже то немногое, что до сих пор известно в этом отношении, не оставляет сомнений в том, что качество листвы и хвои как пищи первичных вредителей изменяется даже у одной и той же древесной породы в различные годы или в пределах одного и того же года в зависимости от условий роста, погоды, от фаз вегетационного периода, от смены дня и ночи, от местонахождения листвы или хвои 1. Химический состав листвы и хвои как пищи в зависимости от этих условий будет различным, а поэтому по-различному будет проявляться влияние ее на вредителей. К этой же группе факторов должны быть отнесены и защитные свойства древесных пород, выработанные ими в процессе борьбы за существование. С нашей точки зрения все вышепере-

¹ С. Демяновский, Е. Прокофьева и Л. Филиппов, Влияние степени зрелости листьев шелковицы на жизнеспособность червей и качество коконов и нити, «Зооло-

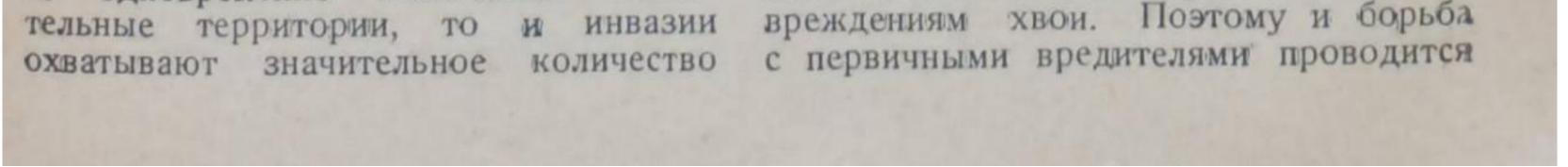
Scanned by TapScanner

О предстоящей вспышке массового размножения сосновой пяденицы и сосновой совки

численные компоненты сопротивления среды комплексно представлены в насаждениях как биоценозах и определяют собою ту динамическую сумму защитных свойств каждого из насаждений, от которой в конечном итоге зависят численность вредителей в них и динамика этой численности во времени. Только этими свойствами отдельных насаждений возможно объяснить те. факты, что частота вспышек инвазий и степень повреждения в различных насаждениях бывает различной. Почти каждое десятилете повторяются инвазии соснового шелкопряда в лесах по Донцу, однако даже и в них степень повреждения отдельных насаждений всегда бывает различной.

B.

Наконец, немаловажное значение имеет и хозяйственная деятельность человека, создающая неблагоприятные или благоприятные условия для гнездования и размножения первичных вредителей. Каждое из проводимых в лесу хозяйственных мероприятий в той или иной мере сказывается на численности вредителей и на динамике ее во времени и в пространстве. лесных массивов. Однако в разных насаждениях рост численности вредителей протекает различными темпами. Чем ниже защитные свойства отдельных насаждений как биоценозов, чем благоприятнее микроклимат этих насаждений для развития и размножения вредителей, тем интенсивнее идет в них рост численности вредителей и тем скорее создаются очаги массового размножения.


37

Так, во время инвазии соснового шелкопряда на Украине с 1919 по 1929 г. массового размножения обочаги разовались в ряде лесхозов Харьковщины и Черниговщины. На Харьковщине очаги были приурочены к насаждениям типа сухого бора, средней полноты, в возрасте 40 и более лет; на Черниговщине - к искусственным сомкнувшимся соснякам, расположенным среди полевых угодий, обособленно от основных массивов, и созданным посадкой на почвах, истощенных сельскохозяйственным пользованием. В повышенном против нормы количестве сосновый шелкопряд наблюдался и в иных типах насаждений и по другим лесным массивам Украины. Например, в Дарницкой опытной даче, по производившимся учетам, численность его местами достигала 261 гуссницы на одно дерево; однако массовых повреждений он здесь не причинил, а с 1929 г. резко пошел на убыль, как и повсеместно. Аналогичная картина была отмечена нами и при последующих инвазиях сосновой пяденицы, сосновой совки и краснохвостого шелкопряда в лесах Украины. Раз начавшись, инвазия протекает закономерно, через определенные фазы развития. Год засухи является и первым годом инвазии, характеризующимся увеличением численности вредителя. В последующие годы эта численность постепенно увеличивается. На третий год инвазии отмечаются первые заметные повреждения, а в последующие два года — массовое объедание хвои. Хозяйствующие организации в лучшем случае обнаруживают инвазию только на третий год, чаще же на четвертый и даже на пятый год ее развития по по-

Таковы компоненты биотического потенциала и сопротивления среды, от которых зависят непрерывное изменение численности первичных вредителей в насаждениях и эпизодическое возникновение и затухание их инвазий.

В настоящее время энтомологическая литература располагает достаточно иногочисленными данными, свидетельствующими о том, что инвазии первичных вредителей леса возникают после или в периоды засушливых лет с повышенной температурой и пониженным количеством осадков. Сухая и теплая погода, устанавливающаяся в период развития и питания того или иного из первичных вредителей, снижает их отпад вследствие воздействия абиотических и биотических факторов, повышает их жизнедеятельность, жизнеспособность, упитанность и плодовитость, а в конечном счете и численность.

Так как засушливая погода чаще всего одновременно охватывает значи-

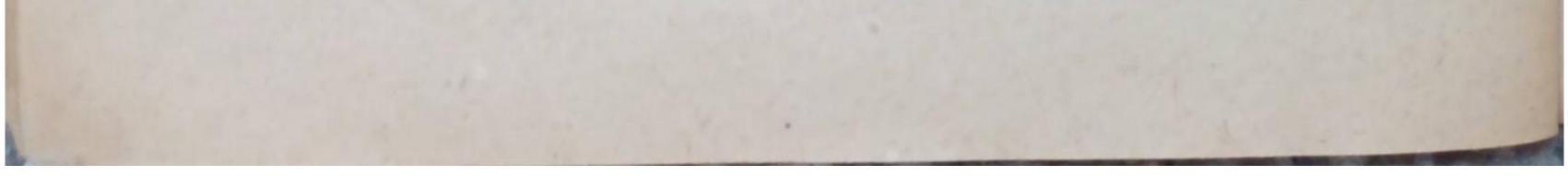
Scanned by TapScanner

А. И. Ильянский

только на четвертом или пятом году инвазии, т. е. в разгар ее или перед ее окончанием и вымиранием вредителя.

По данным Эшериха, длительность инвазий у пяденицы и совки может быть меньше или больше шести лет. Для сосновой совки он считает типичным 3—4-летний период инвазии, но приводит случаи 2- и 5-летней инвазий. Для сосновой пяденицы он указывает на возможность 7-летних инвазий при типичной 6-летней длительности. Однако есть основания полагать, что Эшерих излишне сокращает сроки длительности инвазий у совки.

OT зависит Длительность инвазий темпов их развития. Инвазии протекают интенсивнее и быстрее в благоприятных условиях погоды и в насаждениях, характеризующихся низким уровнем сопротивления среды. Наоборот, в условиях неблагоприятной погоды и в накаждениях, характеризующихся высоким уровнем сопротивления среды, развитие инвазий тормозится, и они могут полностью прекращаться, не приводя к значительным повреждениям насаждений. На основании приведенных данных можно сделать следующие выводы: 1) инвазии наступают после засушливых лет; 2) они одновременно охватытерритории ;; значительные вают З) внешними симптомами начала инвазий будет увеличение абсолютной и относительной заселенности насаждений данным вредителем, сопровождающееся увеличением его жизнеспособности, жизнедеятельности, веса и плодовитости его особей и падением степени деятельности его паразитов и болезней; 4) начавшаяся инвазия проходит через определенные фазы; 5) темп нарастания инвазий может быть различным, более форсированным или замедленным; 6) очаги инвазий создаются в тех насаждениях, которые наиболее полно отвечают биоэкологическим особенностям данного первичного вредителя и


характеризуются наименьшим сопротив. лением среды.

заставили Перечисленные выводы автора настоящей статьи еще в 1932 г. высказать предположение о возможно. сти рационализации надзора в лесах за первичных массовых размножением целях своевременного вредителей B проведения мероприятий по борьбе с ними. Мы полагали, что нет нужды инвазиями осуществлять надзор 32 в каждом из лесхозов. При практиче. ском осуществлении надзора можно ограничиться сетью лесхозов с ежегодными учетами динамики численности вредителей и их зимующего запаса на постоянных пробных площадях, зало. женных в определенных насаждениях этих лесхозов.

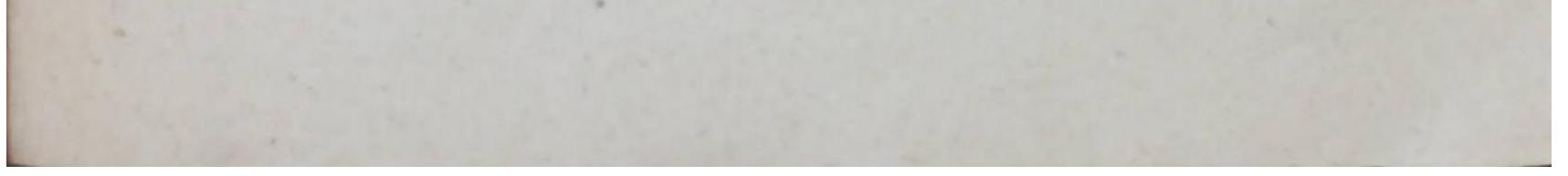
Только с 1935 г. нам удалось присту. пить к проверке высказанных предположений и организовать надзор за вредителями в левобережной даче учебноопытного лесхоза Воронежского лесокультурного института. Дача удовлетворяла требованиям надзора. В ней было много искусственных сосняков в возрасте 20-50 лет, а за период с 1929 по 1934 г. в ряде этих сосняков наблюдалось массовое размножение сосновой пяденицы и соснового шелкопряда. Ограниченность средств заставила на первое время ограничить и число объектов для наблюдения. Надзору были подвергнуты главным образом сосновая пяденица и сосновая совка. В искусственном средневозрастном сосняке квартала 41 проводился ежегодный учет зимующего запаса названных вредителей, сопровождавшийся взвешиванием их куколок, анализом последних на зараженность паразитами и болезнями и частично учетом плодовитости бабочек, выводившихся из куколок. Подстилка для учета куколок просматривалась в трех участках насаждения на общей площади до 0,25 га. Результаты трехлетних учетов оказались следующими. Численность вредителей на пробной площади падала до 1936 г. Последний год был засушливым. Он характеризовался пониженным количеством осадков и повышенными температурами и явился первым годом новой инвазии пяденицы и совки. С 1936 г. начался рост

38

¹ Помимо общих инвазий эпидемического характера, зависящих от условий погоды и охватывающих вначительные территории, могут наблюдаться и инвазии локального характера, приуроченные к тем или иным из насаждений и обусловленные свойствами этих насаждений.

Scanned by TapScanner

численности последних на постоянной пробной площади. Остальные симптомы также подтверждали начало новой инвазии упомянутых вредителей, и необходимо было проверить эти симптомы в последующем 1937 г. на более широкой территории. С этой целью было проведено повторное обследование насаждений в учебно-опытном лесхозе, в также в других лесхозах.


Итоги всех этих работ подтвердили предположения автора и дают возможность сделать ряд выводов о явственных симптомах наступающей инвазии. Симптомы эти таковы.

За два года численность сосновой пяденицы на постоянной пробной площади в левобережной даче увеличилась в 61,3 раза, а сосновой совки — в 55,6 раза. Деятельность их паразитов и болезней пяденицы и совки снизилась как в левобережной, так и в остальных обследованных дачах. Средний вес куколок пяденицы составляет 84%, а у совки-73% от возможного максимального веса их куколок. Средняя плодовитость самок составляет у пяденицы 84%, а у совки — 54%1 от возможной максимальной плодовитости данных видов. Темп приращения плодовитости при изменении веса куколок стоит на высоком уровне. Это говорит о том, что организм с максимальной полнотой использует свои потенциальные возможности к размножению. Куколки самок преобладают над куколками самцов; у пяденицы в левобережной даче самки составляли 64% от общего количества куколок, в Госзаповеднике — 56% и в Совальском лесничестве-51%. Абсолютная заселенность обследованных насаждений, особенно пяденицей, стоит на высоком уровне, и относительная заселенность показывает, что пяденицей охвачена половина, а по ряду дач почти вся территория обследованных насаждений. Абсолютная и относительная заселенность обследованных насаждений пяденицей стоит по сравнению с совкой на значительно более высоком уровне. Последняя в максимальном количестве

обнаружена в левобережной даче учебно-опытного лесхоза Воронежского лесокультурного института. Объясняется это тем, что оптимальные условия для гнездования и прогрессивного размножения создаются для совки в типе сухих боров-беломошников, а для сосновой пяденицы — в свежих борах-зеленомошниках. В максимальном же количестве оба вредителя чаще всего находятся в жердняках и насаждениях среднего возраста, высокой полноты, особенно искусственного происхождения. Упомянем попутно, что во всех обследованных дачах наблюдалось повреждение пяденицей насаждений в предшествовавшую инвазию, сопровождавшуюся усыханием и рубкой догола объеденных древостоев.

Вышеприведенные результаты надзора и обследований не оставляют сомнений в том, что инвазия пяденицы и совки началась, идет усиленными темпами и сигнализирует об актуальной необходимости в целях своевременного прекращения инвазии и предохранения насаждений от объедания уже с 1938 г. принять соответствующие меры борьбы с пяденицей и частично с совкой в обследованных насаждениях. Эшерих указывает, что заселенность в среднем 1 м² шестью здоровыми куколками пяденицы или четырьмя куколками совки создает уже угрозу сильного объедания хвои в насаждениях любых возрастов. В свое время, при работах на Украине, нами были получены близкие к указанным цифры угрожающего количества куколок, а именно: 7 куколок пяденицы и 3,6 куколки совки в среднем на 1 м² заселенных вредителями насаждений. Целый ряд обследованных нами осенью прошлого года насаждений превышал по абсолютной заселенности приведенные нормы. Учитывая начало инвазии и необходимость ее прекращения, мы сочли целесообразным еще более снизить названные нормы и запроектировать под авиаопыление или сгребание подстилки по каждой из обследованных дач наметившиеся центры будущих очагов массового размножения пяденицы, а в левобережной даче — совки и пилильщика. Приведенные соображения о ходе инвазий и о возможности скорейшего их

¹ Плодовитость совки устанавливалась нами путем вычислений по весу куколок. Фактически она должна быть, повидимому, выше.

Scanned by TapScanner

А. И. ИЛЬИНСКИЙ

однако, прекращения подсказывают, что осуществлению намечаемых в 1938 г. должно истребительных мероприятий весеннее предшествовать контрольное обследование на степень благополучия летом перезимовки куколок, надзор за яичек. бабочек и за откладкой ими Окончательно же конфигурация очагов перед опылением должна быть установянчкам, лена путем обследования по отложенным в насаждениях.

Проектируя борьбу с пяденицей и совкой на третий год их инвазии, мы рекомендуем осуществить ее на 1-2 года раньше, чем она осуществлялась до сих пор. По нашему мнению, только при таких условиях борьбы можно булет полностью предохранить насажде. ния от повреждений гусеницами пяденицы и совки и вести борьбу на меньших площадях. Но все же открытым остается вопрос: удастся ли путем такой борьбы подавить развивающуюся инвазию в самом начале? Не придется ли и в последующие годы дополнительно проводить борьбу на тех площадях, на которых в настоящее время численность пяденицы и совки не представляет явной угрозы. Ответ на этот вопрос дать трудно, так как в практике до сих пор не осуществлялась борьба в начальном периоде инвазий, о чем упоминалось выше. Некоторые соображения, не подкрепленные, однако, практикой, предусматривают возможность успешной борьбы без повторений ее в последующие годы, по крайней мере на значительных площадях. Охватив борьбой территорию назревающих очагов и уничтожив гусениц в раннем возрасте, мы тем самым сохраним имеющийся в тех же очагах запас паразитов и вынудим их к переселению в смежные, не затрагиваемые борьбой насаждения в поисках гусениц и куколок пяденицы и совки. Практика борьбы с сосновым шелкопрядом в лесах Украины в 1927 г. путем кольцевания насаждений гусеничным клеем показала, что в насаждениях, смежных с закольцованными, шелкопряд был уничтожен почти полностью хищниками и паразитами. В связи с этим в последующем 1928 г. пришлось кольцевать уже незначительные площади насаждений, причем удаленные от

закольцованных насаждений в 1927 г. Доугими словами, уничтожение гусе. ниц шелкопряда в закольцованных на. саждениях содействовало повышению деятельности хищников и паразитов в смежных незакольцованных насаждени. ях, куда они перекочовывали из наса. кольцеванию! ждений, подвергшихся что борьба с Однако важно отметить, проводилась в сосновым шелкопрядом разгар инвазии, а не в годы ее назре. вания, и путем кольцевания насаждений. а не авиаопылением².

Несомненно, что надвигается инвазия не только пяденицы и совки, но и других вредителей леса, угрожающая рас. пространиться и в Воронежской обла. сти и за ее пределами. В результате засухи 1936 г., охватившей значитель. ную территорию лесов Главлесоохра. ны, следует ожидать в ближайшие тры года вспышек массового размножения первичных вредителей в ряде ряда лесных массивов. Возможно, что инвапилильщика, которым зия соснового осенью 1937 г. охвачена площадь около 102 тыс. га только в одних лесах Главлесоохраны, возникла вследствие той же засухи. При наличии двух генераций в году инвазия пилильщика должна протекать более быстрыми темпами. Второе поколение пилильщика в 1937 г. соответствует четвертому году инвазии других вредителей, т. е. году их массового размножения. Поэтому естественно ожидать, что весеннее поколение пилильщиков в 1938 г. будет уже поколением кризиса инвазии. Таким образом, инвазия пилильщика нами оказалась упущенной, так как мы не включили его в число вредителей, подлежащих надзору.

40

Как уже было отмечено, помимо совки, пяденицы и пилильщика, можно ожи-

¹ Еще Юдейх и Ничше (Lehrbuch der mitteleurop. Forstinsectenkunde, 1889) указывали на то, что закольцованные насаждения представляют собою крупные тахинарии.

² Авиаспыление может вызвать гибель взоо слой формы тахин и наездников, присутствую щих в насаждениях в период их опылени (В. Циопкало, К вопросу о химической методе борьбы с сосновой совкой, «Соц ле хоз.», Харьков, 1933, № 3 и др. авторы Однако до сих пор остается не установление экспериментальным путем степень гибели эта полезных насекомых в результате опылени насаждений.

Scanned by TapScanner

Голландская болезнь и меры борьбы с нею

дать инвазии и других первичных вредителей. Простой осмотр насаждений в 1937 г. обнаружил присутствие в ряде мест, например в лесхозах Цнинского массива, повышенного количества соснового, непарного и краснохвостого шелкопрядов, а кое-где и бурополосой пяденицы.

Все это сигнализирует о том, что надзор за массовыми вредными насекомыми в 1938 г. должен быть усилен; мы должны проявить особую бдительность на этом участке нашей работы.

В качестве наиболее необходимого мероприятия можно рекомендовать в 1938 г. провести контрольное обследование сосняков на заселенность их куколками сосновой пяденицы, сосновой совки и гусеницами соснового шелкопряда.

Такое обследование путем раскопок

подстилки должно быть проведено 1) в борах-зеленомошниках 20—50-летнего возраста, высокой полноты, особенно искусственного происхождения (куколки сосновой пяденицы) и 2) в борах-беломошниках средней и выше средней полноты, или в искусственных сосняках 15—50-летнего возраста, высокой полноты, расположенных на повышенных частях рельефа или обособленно от лесных массивов, среди полевых угодий, в последнем случае — при любых почвенных условиях (куколки сосновой совки и гусениц соснового шелкопряда).

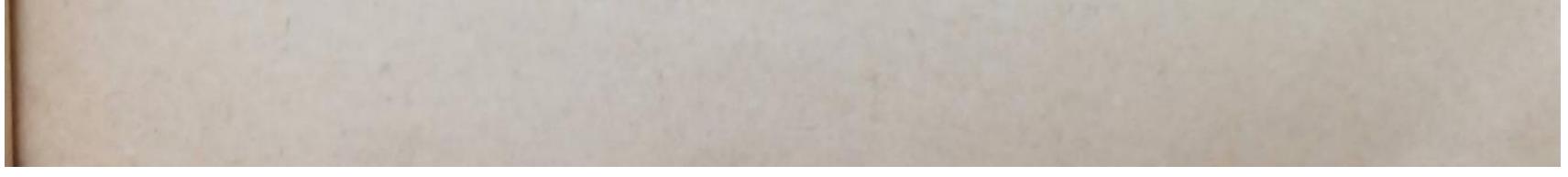
В заключение обращаем внимание на необходимость организации при определенных лесхозах опорных пунктов по надзору за инвазиями массовых первичных вредителей леса в целях своевременного проведения мероприятий по борьбе с ними.

1

ГОЛЛАНДСКАЯ БОЛЕЗНЬ И МЕРЫ БОРЬБЫ С НЕЮ

А. Л. ЩЕРБИН-ПАРФЕНЕНКО

В Краснодарском крае имеет место массовое отмирание всех видов ильмовых. В результате произведенного нами в июле 1937 г. исследования установлено, что основной причиной отмирания является болезнь из группы гидромикозов, вызываемая грибом Graphium Ulmi Schwarz. Сравнительно недавно (лет 10—15 назад) в Западной Европе (Голландия, Германия) появилась болезнь, вызвавшая массовую гибель вязов. Впервые это явление наблюдалось в 1919 г. в Голландии, ввиду чего и болезнь получила название «голландской».


Мнения о причинах этой болезни были различны: одни авторы считали причиной неблагоприятные климатические условия, другие, как например Бруссов, находили, что гибель вязов вызывается бактерией Місгососсиз Ulmi Brussoff, и, наконец, третьи — Шварц, Волленвебер, Стапп, Линден, Циннек причиной болезни считали несовершен-

ный гриб Graphium Ulmi Schwarz. Последнее мнение теперь считается общепризнанным (Ячевский, Бургвиц). Проф. Ванин присоединяется к тому мнению, что здесь имеет место совместное действие микроба Micrococcus Ulmi Brussoff и гриба Graphium Ulmi Schwarz.

За последние 15 лет голландская болезнь распространилась по всем странам Центральной Европы и проникла в США. Отмечена она в соседних с нами странах — Румынии и Польше. Англия 15 января 1927 г. запретила ввоз живых ильмовых из всех стран Европы (Ванин).

В Советском Союзе эта весьма опасная болезнь до последних лет не была обнаружена. В конце 1936 г. наличие ее впервые в Союзе было установлено Центральной карантинной лабораторией в образцах береста и вяза, присланных из Киева, Одессы и Саратова.

Нами впервые в Краснодарском крае

Scanned by TapScanner

А. Л. Щербин-Парфененко

деревья уже заражены, то неизбежная гибель их — лишь вопрос времени.

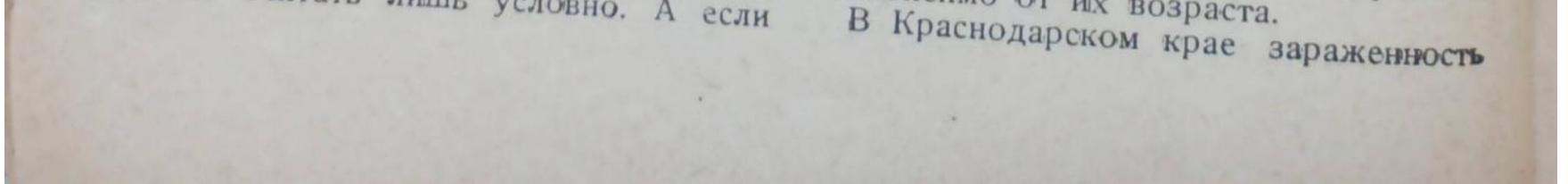
Для выяснения степени зараженности в упомянутой уже Армавирской даче Крапоткинского леспромхоза в конце 1937 г. были взяты на учет насаждения береста и вяза с резкими признаками усыхания на площади 960 га (всего 9 381 дерево массой 1 298 м³). Площади, отведенные в рубку на 1938 и 1939 гг. на которых тоже имелось очень много сухостоя, при этом не были учтены. Так, например, в кварталах 54, 81, 83. 74, 60, на делянках лесосеки 1938 г. об. щей площадью 24,5 га при перечете из 5 291 корня оказалось сухостоя 1 592 (30%), а по массе 390 м³ (18%) и с резкими признаками усыхания 985 корней, по массе 350 м³ (16,9%). В итоге на условно здоровых делянках оказалось всего лишь 2714 деревьев (51%), а по массе — 1 330 м³ (64,3%). Необходимо при этом подчеркнуть следующее весьма характерное обстоя.

42

Усыхающие бересты в Армавирской лесной даче Крапоткинского леспромхоза

она зарегистрирована в июле 1937 г. Особенно сильно голландская болезнь развилась в пойме р. Кубани, где больше всего имеется береста и вяза. Так, например, в 74-м квартале Армавирской лесной дачи Крапоткинского леспромхоза на пробной площади 0,5 га из общего количества 262 корней береста и вяза при пересчете оказалось сухостойных 36 шт., или 15%, отмирающих 199 шт., или 75%, и здоровых 27 шт., или 10%. Другая проба площадью 0,25 га, заложенная в 64-м квартале Кавказской лесной дачи того же леспромхоза, дала такой результат: из общего количества 62 корней береста оказалось здоровых 11 шт., или 18%, отмирающих — 37 шт., или 59%, и сухостойных 14 шт., или 23%.

В категорию здоровых заносились те деревья, которые имели полную зеленую крону. Однако при исследовании таких здоровых деревьев было установлено, что они за редкими исключениями уже имели внутри начало заражения, следовательно, здоровыми их можно считать лишь условно. А если


тельство: при перечете, производившемся на указанных делянках, весной того же 1937 г., по утверждению местного лесовода т. Германа, сухостой встречался лишь единичными экземплярами. Таким образом, в течение одного лишь лета 1937 г. появилось до 50% сухостоя и деревьев с резкими признаками усыхания.

В молодняках этой же дачи учтено до 800 скл. м³ мертвого и явно отмирающего береста.

По Кавказской даче, помимо площадей, отведенных для сплошной рубки, учтено на площади 1851 га сухостоя 6 673 корня массой 1 617 м³ и деревьев с явными признаками усыхания 2559 корней массой 954 м³. Итого 9 232 корня массой 2 571 м³.

Примерно такое же положение имеет место и по другим обследованным

Приведенная выше краткая характеристика достаточно наглядно свидетельствует о степени зараженности и интенсивности усыхания ильмовых. Отмирают не только спелые древостои, но также приспевающие насаждения и молодняки. Ильмовые породы — берест, вяз, ильм — поражаются совершенно независимо от их возраста.

Scanned by TapScanner

Голландская болезнь и меры борьбы с нею

очень сильно распространилась в древостоях естественного происхождения¹, и не только в пойме р. Кубани, но и в лесогорной полосе. Основным очагом все же надо считать леса поймы р. Кубани.

Отмирающие деревья внешне характеризуются такими признаками: листва, чаще всего в верхней части кроны, увядает, свертывается и засыхает, причем сохнет часто, будучи еще зеленой. Некоторое время она держится на деревьях, а потом медленно под влиянием ветра опадает. Листва обычно засыхает не вся сразу, а частями, постепенно, почти всегда начиная с вершины, иногда с какой-инбудь одной ветки. Таким путем крона постепенно изреживается до полной потери листвы. Наряду с этим нередко встречаются деревья с побуревшей, как будто обожженной огнем листвой. Ветви по мере потери листвы увядают и поникают слегка, затем засыхают.

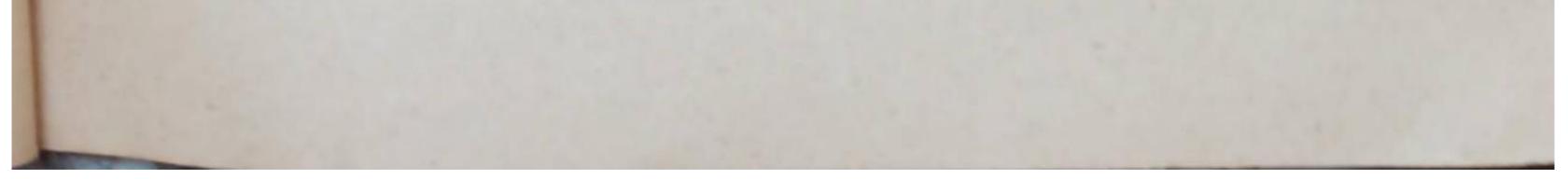
Деревья с явно отмирающими кронами на высоте груди и ниже часто не

48

имели никаких внутренних признаков болезни. Это дает основание полагать, что болезнь возникает преимущественно вверху, в кроне, а затем передвигается по стволу вниз.

Отмирающие деревья часто дают много волчков, листва которых до поры до времени поддерживает жизнь дерева в нижней и средней частях ствола. Отмершие на корне деревья не дают поросли.

Ряд наших наблюдений показывает, что не все деревья одинаково реагируют на поражение болезнью: одни отмирают сравнительно медленно, другие же быстро — в течение нескольких недель. Как указывает В. С. Дудина, в зависимости от внешних условий, возраста дерева и степени его восприимчивости к голландской болезни последняя может принять острое или хроническое течение. Острая форма длится от нескольких недель до нескольких месяиев, хроническая форма может тянуться годами. Конечным результатом как


¹ В. С. Дудина — автор листовки «Голалядская болезнь вязов» — отмечает, что эта болезнь ваблюдается преимущественно в искусственно выращенных насаждениях.

Массовое отмирание ильмовых

той, так и другой формы болезни всегда является полная гибель дерева. При хронической форме болезнь развивается медленно. Поражение начинается обычно в верхней части кроны на одной-двух ветвях. Первыми поражаются наиболее молодые побеги, затем болезнь передается более толстым веткам и сучьям. На пораженных ветках листва изреживается и несвоевременно желтеет, и поэтому такие деревья заметить нетрудно. Пожелтевшая листва опадает медленно, иногда в течение всего лета. Болезнь распространяется по ветвям и сучьям и постепенно охватывает все дерево. Эта форма болезни наблюдается преимущественно у старых деревьев. Типичную хроническую форму голландской болезни мы наблюдали в перестойных древостоях Красностепной лесной дачи (кварталы 10 и 11) Новороссийского леспромхоза.

При острой форме листва внезапно вянет, свертывается и засыхает по всей кроне, начиная с молодых побегов. Увядание и засыхание листьев нередко

Scanned by TapScanner

А. Л. Щербин-Парфененко

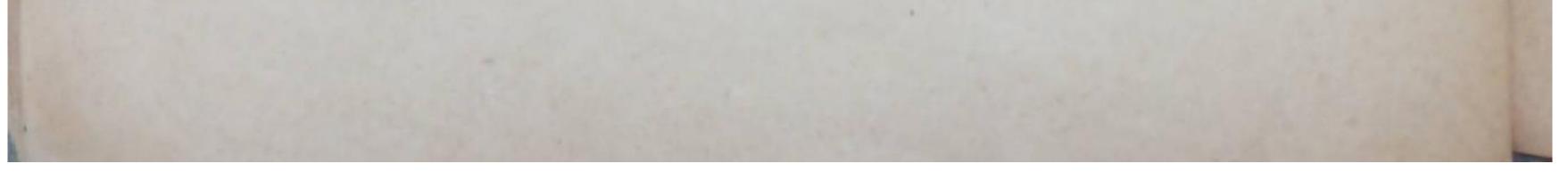
Части зараженных стволов

происходит так быстро, что они сохраняют свой зеленый цвет. Сухие листья некоторое время висят на дереве, а затем медленно опадают. Поражение начинается, как и при хронической форме, с крайних ветвей, часто с одной стороны кроны, а иногда по всей кроне одновременно. Через несколько недель после появления болезни дерево теряет листву. его; нередко пятна эти можно видеть также и во втором годичном кольне, иногда в последних двух и сравнитель но редко в третьем.

При снятии коры открывающаяся заболонь в летнее время года имеет заленоватый цвет. На воздухе он довольно быстро исчезает, и тогда на повераности заболони отчетливо выступают бурые прожилки, штрихи или даже сплошное потемнение. Чтобы их открыть и лучше видеть, надо срезать первое внешнее годичное кольцо.

Чтобы точно установить наличие заражения — штрихи, прожилки или сплошное потемнение, нельзя ограничиваться только снятием коры, а следует наискось срезать не менее трех внешних годичных колец. Если зараженчые места находятся внутри второго или третьего годичного кольца, то при снятии коры они не могут быть обнаружены.

При рассмотрении в лупу бурой пленки или штрихов, а на поперечном срезе — точек или разорванных бурых колец, можно видеть, что водопроводящие сосуды весенней части годичного кольца закупорены бурой массой. Закупорка сосудов происходит в результате жизнедеятельности гриба Graphium Ulmi Schwarz и является причиной увядания и отмирания деревьев. Заражение ильмовых пород грибом Graphium Ulmi Schwarz происходит вследствие проникания спор гриба. Как указывает В. С. Дудина, в начальных стадиях болезни гриб развивается внутри древесины, на поверхность не выходит и не дает спор. С отмиранием дерева гриб, не прекращая своего развития, выходит наружу и образует массу спор. Плодоношение гриба происходит, таким образом, на поверхности и только на отмершей древесине. Разносимые воздушными течениями споры, попадая в раны и место различных повреждений коры, заражают деревья. Источником заражения могут быть не только сами пораженные деревья, но и отдельные части их — бревно, кора, ветки, опилки. Главная роль в распространении голландской болезни, по последним исследованиям, принадлежит короедам-заболонникам. По нашим наблюдениям, от-


44

В натуре, естественно, можно встретить различные вариации описанных типичных форм болезни.

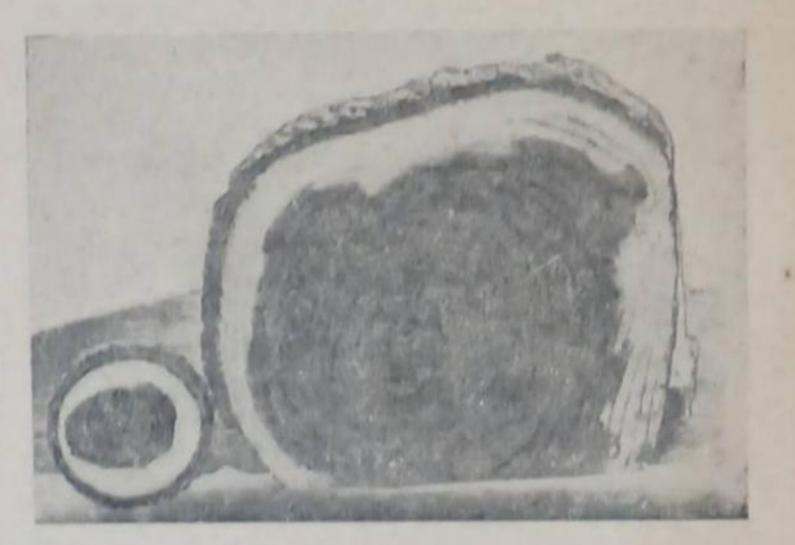
Совершенно ясно, что быстрое отмирание деревьев влечет за собою и другие вредные последствия, главным образом нападение короедов, вызывающих быстрое отмирание деревьев независимо от наличия той или иной формы голландской болезни.

На поперечном срезе зараженных ветвей, сучьев, стволов, во внешних годичных кольцах всегда наблюдаются буровато-коричневые точки, пятна, часто сливающиеся и охватывающие либо всю окружность годичного кольца, что бывает сравнительно редко, либо отдельные участки его в виде разорванной цепочки.

По преимуществу они наблюдаются в последнем внешнем годичном кольце, причем, как правило, в весенней части

Scanned by TapScanner

мирающий и отмерший древостой имеет резко выраженный очаговой, гнездореако праемуществу к опушкам и куон по преимуществу к опушкам и куон по преимуществу к опушкам и куисам (шахматная рубка). Исследованные нами модельные деревья почти всегда оказывались зараженными, кровсегда оказывались зараженными, кроме голландской болезни, также и короедами. Во многих случаях легко можно было проследить, что заражение начиналось от хода насекомого.


Молодые жуки, переходя из зараженного голландской болезнью дерева, заносят споры гриба на соседние здоровые деревья и заражают их. Даже и в том случае, если короеды после втачивания под кору дерева не станут на нем селиться, свою роль распространителей болезни они все же выполняют.

Роль короедов в распространении болезни очень велика, но далеко не исключительна. На зараженных деревьях, особенно в начальной стадии, часто отсутствуют всякие признаки наличия короедов. Наблюдается также заражение самых молодых растений. Очевидно, споры попадают внутрь деревьев и другими путями. Следует отметить, что в лесах по р. Кубани не так легко найти берест, который не имел хотя бы одной морозобойной трещины. Сплошь и рядом из этих трещин вытекает желто-коричневая вязкая жидкость с сильным запахом маслянокислого брожения. Как известно, в этой слизи можно находить бактерию Micrococcus dendroporthos Lud в симбиозе с некоторыми грибами. При исследовании таких деревьев оказывалось, что они часто были заражены также Graphium Ulmi Schwarz, причем насколько это возможно было установить, заражение шло со стороны трещины. Вблизи раны, во внешнем годичном кольце, наблюдалось сплошное почернение от Graphium Ulmi Schwarz, которое по мере удаления от раны по окружности дерева и его высоте постепенно уменьшалось, переходя в отдельные штрихи, прожилки, нити и сходя на-нет. Повидимому, морозобойные трещины являются воротами, через которые споры Graphium Ulmi Schwarz проникают внутрь дерева.

проявляется в засушливое время. В Краснодарском крае во второй половине лета и осенью обычно стоит сухая и жаркая погода. Расход на испарение в это время сильно увеличивается и в то же время закупоренные водопроводящие сосуды сильно его затрудняют. Отсюда и яркое проявление болезни в это время года.

Не малый интерес представляет вопрос, как давно болезнь существует в Краснодарском крае. Точно ответить на этот вопрос пока, конечно, невозможно, но несомненно то, что существует она уже сравнительно давно. Не лишним будет привести следующие факты: лесоустроительный отчет за 1927/28 г. по даче «Курго» Краснодарского леспромхоза уже отмечает суховершинность береста. В 1933/34 г. в Краснолесской лесной даче того же леспромхоза было вырублено 107 га леса с преобладанием береста, причем, по словам лесовода т. Беляка, работавшего в этой даче, отмирание береста носило такой же характер, как и в настоящее время. Некоторые работникистарожилы указывали, что болезнь береста замечалась ими в 1929/30 г. Сильные вспышки наблюдались в 1936 и особенно в 1937 г., но лесоводы и энтомолоти, производившие обследование, указывали либо на почвенные условия, либо на работу короедов. В лесогорной полосе края эта болезнь была обнаружена в августе 1937 г. в Майкопском, Мезмайском и Армянском леспромхозах, а также на Черноморском побережье по р. Мзымте. Су-

Голландская болезнь развивается в течение всего лета и наиболее ярко

Поперечные срезы стволов

Scanned by TapScanner

А. Л. Щербин-Парфененко

хостой здесь единичен, а суховершинник сравнительно редок, зато отмирающих деревьев с ажурной кроной очень много.

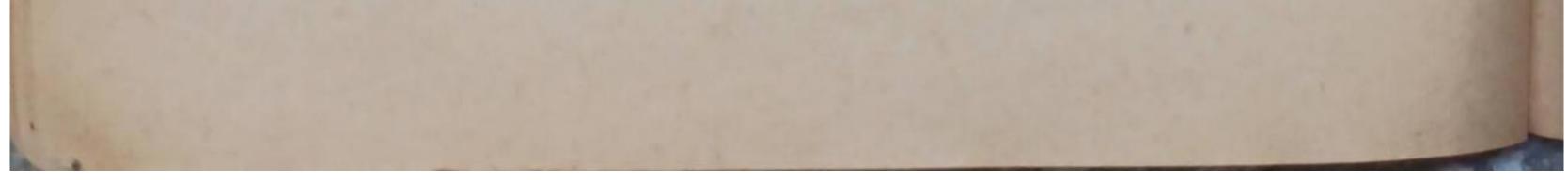
В листовке Центральной карантинной лаборатории в отношении борьбы с голландской болезнью рекомендуется применять такие радикальные меры, как «уничтожение очагов заболевания путем сжигания больных деревьев», а затем вести активную борьбу с короедами. Что касается короедов, то этот вопрос не вызывает сомнений. Другое дело сжигание: где сжигать, как сжигать и какие деревья сжигать, совершенно неясно. Сжигать ли только сухостой или даже деревья с начальной стадией болезни? Сжигать ли в лесу на кострах или отпускать населению для сжигания в печах? Едва ли будет целесообразно и допустимо сжигать десятки тысяч кубометров в лесу, а тем более деревья с начальной стадией заражения.

Надо полагать, что Центральная карантинная лаборатория, рекомендуя такие меры, имела в виду небольшие очаги этой болезни, не подозревая о размерах, каких она достигла. Вырубка зараженных ильмовых в Краснодарском крае, особенно на Кубани, дело настолько серьезное, что подходить к нему столь упрощенно абсолютно невозможно. Этот вопрос подлежит всестороннему изучению и рассмотре-НИЮ. Что необходимо безотлагательно сделать, это точно установить районы распространения болезни с тем, чтобы в незараженные районы не допустить ввоза дров, лесоматериалов, саженцев, ссянцев и даже семян ильмовых пород. В зараженных районах необходимо соответствующим ведомствам и организациям пересмотреть свои планы в отношении культивирования ильмовых пород. Всем лесным работникам, особенно имеющим дело с берестом, следует хорошо знать об этой болезни.

Советскому Союзу. Работники на местах быстрее могут это сделать, чем специальные обследования, которые не могут охватить все районы. В случае болезни в незараженных районах (в питомниках, рощах, аллеях, парках, на отдельно стоящих деревьях) следует немедленно зараженные деревья вырубить и сжечь полностью с корой и ветвями, а лни окорить и со всех сторон замазать креозотом с мазутом. В случае обнаружения голландской болезни в лесу, особенно в большом масштабе, следует организовать обследование и дальнейшие меры применять в зависимости от конкретной обстановки.

Поскольку голландская болезнь является объектом карантина, меры борьбы необходимо согласовать с Государственной службой карантина. Последней с нашей точки зрения следует разработать и дать реальные указания для борьбы в разных условиях.

46


Затем необходимо проверить состояние древостоев всех ильмовых по всему

В отношении болезни Graphium Ulmi Schwarz за границей существует обширная литература. Но у нас о ней данных очень мало: страничка посвящена в «Лесной фитопатологии» проф. С. И. Ванина (изд. 1934 г.), 17 строк — в груде проф. Ячевского «Бактериозы растений» (изд. 1935 г.) и 6 строчек — в работе «Бактериальные болезни растений» проф. Бургвиц (изд. 1936 г.).

Подробнее об этой болезни сказано в листовке Центральной карантинной лаборатории, составленной В. С. Дудиной и изданной в декабре 1936 г. Листовку эту найти, однако, трудно даже тому, кто знает о ее существовании. Многие, кому она попала в руки, в том числе и местный карантинный надзор, не обратили на нее должного внимания и о ней быстро забыли.

Весьма желателен также перевод иностранной литературы по данному вопросу на русский язык.

Голландская болезнь требует детального исследования и изучения в наших условиях.

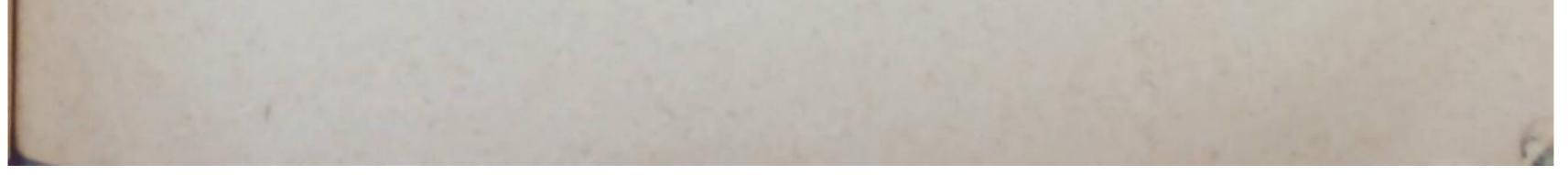
Scanned by TapScanner

ВЛИЯНИЕ ПОДСОЧКИ НА ТЕХНИЧЕСКИЕ СВОЙСТВА ДРЕВЕСИНЫ

С. Я. ЛАПИРОВ-СКОБЛО

Бурный рост нашей советской терпентинной промышленности и неуклонно растущие требования, предъявляемые к ней важнейшими отраслями народного хозяйства (оборонной промышленностью, бумажной, мыловаренной и электротехнической), придают особо актуальное значение вопросу добычи живицы. В настоящее время Советский Союз по валовой добыче живицы занимает третье место в мире, и площади подсоченных насаждений увеличиваются с каждым годом. В лесах водоохранной зоны устанавливается десятилетний срок подсочки, причем обязательной подсочке подлежат все пригодные для этой цели сосновые насаждения, входящие в 10-летнюю лесосеку. Таким образом, во всю ширь встает вопрос о влиянии различных способов подсочки сосны на технические свойства ее древесины. Рассмотрим данные иностранной и отечественной

Мнения практиков относительно изменений, которые подсочка производит в древесине (становится ли она беднее смолой или нет, крепче или слабее и т. д.), оказались настолько противоречивы, что нельзя было сделать общего вывода.


Д-р Гомберг (М. Gomberg) исследовал содержание смол и их распределение в деревьях длиннохвойной сосны до и после подсочки и произвел анализы 17 подсоченных и 5 неподсоченных стволов. Он констатирует: «Несмотря на то" что полученный материал недостаточнополон, он дает возможность сделать следующие выводы: 1) древесина ядра подсоченных деревьев может содержать очень большое количество смолы; 2) древесина деревьев, подсочка которых прекращена только за один год перед рубкой, может содержать в ядре такое же количество смолы» как и древесина деревьев, подсочка которых закончена пять лет назад; 3) древесина неподсоченных деревьев не всегда содержит в ядре большее. количество смолы, чем подсочен-НЫХ» 1. Далее Гомберг указывает: «Пишущий эти строки не склонен делать на основе результатов сравнительно небольшого числа опытов какие-либо поспешные обобщения и рассматривать их как разрешение настоящей проблемы. Прежде чем может быть дан положительный или отрицательный ответ на вопрос, влияет ли подсочка с целью получения живицы на химический состав ядра подсачиваемого дерева, необходимо произвести большое количество анализов, свободных от всяких случайностей в выборе образцов». Таким образом, сам автор признает, что количество анализов было недостаточным, вследствие чего полученные данные надо считать первым подходом к освещению затронутого вопроса.

литературы.

Американская литература. Лесным отделом департамента земледелия США в 1891-1892 гг. было произведено исследование влияния подсочки на качество древесины длиннохвойной сосны (Pinus palustris). К решению вопроса лесной отдел подошел с трех сторон: 1) д-ру Т. Рот (Tilibert Roth) поручено было объехать штаты, где подсочка ведется в больших размерах, и на местах производства собрать мнения специалистов этого дела; 2) д-р Гомберг (M. Gomberg) занялся анализом химического состава подсоченных и неподсоченных деревьев для выяснения влияния подсочки на содержание смолы в древесине; 3) проф. Джонсон (J. B. Johnson) произвел сравнительные испытания механических свойств древесины подсоченной и неподсоченной сосны. Отчет об этой работе опубликован под названием «Физические свойства древесины. Результаты исследования длиннохвойной сосны»¹.

¹ U. S. Department of Agriculture Forestry Division, Bulletin № 8; Timber Physics, Part II, Progress report. Results of investigations on long-leaf pine. Under the direction of B. E. Fernow, Chief of Forestry Division, Washington, 1893.

1 M. Gomberg, A chemicalg study of the resinous content and their distribution in trees of the long-leaf pine, befor and after tapping for turpentine, p. 34.

Scanned by TapScanner

С. Я. Лапиров-Скобло

В первой части вышеуказанного труда «Физические свойства древесины» излагаются результаты произведенных (в лаборатории Вашингтонского университета в Сент-Луи под руководством проф. Д. В. Джонсона) испытаний механических свойств древесины подсоченной и неподсоченной длиннохвойной сосны¹.

Испытано было 26 деревьев, произрастающих в шт. Алабама. Десять из них были здоровые, нормально растущие деревья из двух разных районов штата, в возрасте в среднем около 200 лет (днаметр деревьев около 21 дюйма, т. е. 53,34 см). Остальные (средний диаметр 18 дюймов, т. е. 45,72 см) подсачивались для добывания живицы, причем восемь деревьев были взяты с участка, где подсочка закончена пять лет назад, а подсочка остальных восьми деревьев производилась до момента рубки их для взятия образцов.

Результаты испытаний получились, по сообщению проф. Джонсона, следующие: «1) Крепость древесины подсоченных деревьев, взятых с участка, где подсочка продолжалась, оказалась на 4% больше, чем у деревьев, подсочка которых прекращена 5 лет назад; 2) крепость древесины нижних отрубков подсоченных деревьев на 7% выше, чем крепость древесины таких же отрубков деревьев неподсоченных, естественно развивавшихся; 3) по всем видам сопротивления, за исключением твердости и растяжения², древесина подсоченных деревьев оказалась лучшей по качеству». Эти данные дали возможность проф. Джонсону с уверенностью сказать, что «добывание живицы из деревьев длиннохвойной сосны ни в какой мере не ухудшает их, поскольку это касается технических качеств их древесины».

Фернова (В. Е. Fernow), который указ фернова (в. вает: «Результаты испытаний, показа вает: «Результаты древесина вает: «голученная древесина крел шие, что подсоченная древесина крел неподсоченной, что проф. Джонски неподсочениять влиянием подсоче не дают все же возможности присое не дают в такому заключению. Мож предполагать, что подсоченные ревья, из которых взяты образцы, б ли расположены в таком районе, п почвенные условия благоприятствую выращиванию древесины лучших ка честв, тем более что сравнение качест подсоченной и неподсоченной древе сины производилось на образцах разных районов».

Таким образом, как отмечает в предисловии д-р Фернов, сравнение каче ства подсоченной и неподсоченной дре весины производилось по образцам и разных районов. Это обстоятельство по существу, лишает выводы Джонсова какой-либо научной ценности. Мы знаем, что одна и та же древесная порода в зависимости от условий лесопроизрастания, особенностей роста и прочи

Насколько научно обоснованы выводы проф. Джонсона, можно судить из предисловия к его работе д-ра Б. Э.

факторов обладает разными физико-ме. ханическими свойствами.

Управление лесами США (Forest service) произвело исследование в целях установления влияния удаления смолы и скипидара, а также подсочки на кре. пость южных сосен 1. В циркуляре управления лесами № 12, озаглавленном «Южные сосны — механические и физические свойства», приведены резуль. таты испытания в Мэдиссоновской лаборатории. Arthur Koehler указывает, что испытания крепости и определения содержания смолы, произведенные за последнее время в Мэдиссоновской лаборатории, не дают оснований для установления какой-либо зависимости между крепостью древесины и содержанием смолы. Эти данные о влияния подсочки на крепость древесины вслед. ствие их краткости трудно поддаются оценке. Мы не знаем даже основногометода отбора образцов для испытания, который, как мы видели из работы проф. Джонсона, имеет решающее значение. Отсутствие данных испытаний на ударный изгиб и определения коз-

¹ Arthur Koehler, Factors affecting the strength of wood members, 1919.

Scanned by TapScanner

¹ Mechanical tests made at Washington University testing laboratory st Louis, M. O.; Written by Prof. J. B. Johnson (reprinted with correction from Bulletin 6), p. 3.

² По данным Джонсона, временное сопротивление при растяжении вдоль волокон у древесины подсоченной сосны ниже, чем у неподсоченной, на 10,4%.

фициента качества является большим

Что же касается исследования о вли-

янии удаления смолы на крепость древесины, то необходимо отметить недопустимо малое число испытаний (всего семь), которое, несмотря на тщательность отбора образцов, не в состоянии обеспечить надежность выводов. Кроме того, испытание механических свойств произведено только в отношении сопротивления сжатию вдоль волокон, вследствие чего нельзя говорить о влиянии удаления смолы на крепость древесины вообще¹.

В труде Артура Коэлера «Свойства н использование древесины»² в главе V («Факторы, влияющие на крепость древесины») имеются сведения о качестве древеснны подсоченной длиннохвойной сосны (Pinus palustris). Автор указывает: «Существует некоторого рода предубеждение против, так называемой, подсоченной древесины в тех случаях, когда крепость дерева является решающим моментом. Сравнительные данные исследования подсоченной и неподсоченной древесины⁸ показывают: 1) подсоченная древесина обладает такою же крепостью, как и неподсоченная, если вес их одинаков, 2) подсочка не оказывает влияния на вес и усушку древесины; 3) подсоченные деревья содержат такое же количество смолы, как и неподсоченные».

Влияние подсочки на технические свойства древесниы

ководство по подсочке»¹, в котором приводятся данные для длиннохвойной (Pinus palustris) и кубинской (Pinus caribaca) сосны в отношении изменений, вносимых подсочкой в анатомическое строение древесины. Данные эти подтверждают показатели Мюнха для обыкновенной сосны в Германии и проф. Л. А. Иванова для обыкновенной сосны в СССР.

Это изменение во всех случаях выражается прежде всего в увеличении числа смоляных ходов после подсочки за счет образования так называемых патологических смоляных ходов, анатомия которых дана упомянутыми выше авторами.

В американском журнале «Naval Stores Review» в 1937 г. была помещена статья «Подсочка не препятствует использованию древесины для бумажной массы»².

Вся статья посвящена вопросу охраны лесов от пожаров при подсочке. По вопросу же о пригодности подсоченной древесины для бумажной массы указаню: «Что касается вопроса пригодности сосновой древесины для изготовления бумажной массы после использования деревьев для подсочки, то д-р Чарльз Хирти (Charles H. Herty) а считает, что древесина при этом нисколько не страдает, исключая разве нижних отрубков, но в некоторых случаях и эти отрубки могут быть использованы». Французская литература. М. Кампредон (M. Campredon) в своей работе «Механические испытания для сравнения качества древесины подсоченной и неподсоченной приморской сосны» 4 знакомит нас с результатами испытаний механических свойств древесины

Следовательно, как видно из примечания самого автора, мы не имеем возможности проанализировать научную ценность вышеприведенных трех очень актуальных выводов. Мы выше рассмотрели результаты исследования J. B. Johnson, автор же ссылается на padoty Johnson A. L.

В 1936 г. управление лесами департамента земледелия США издало «Ру-

1 Крепостью древесины называется способвость ее оказывать сопротивление сжатию, растяжению, изгибу, сдвигу и кручению.

"The properties and uses of wood by Arthur Koehler, B. S., N. V., 1924.

в .Подробност см A. L. Johnson, Southern pine, Mechanical and Physical Properties, Forest service, (ircular 12. Это издание целиком разошлось и его можно только найти в публичных сиблиотеках». Артур Коэлер.

1 A. Naval, Stores Handbook U. St. Dep. of Agr Miscell+neous Publication, № 209, 1935, p. 33. 2 Tu pentining does not stop use of trees for paper pulp, Naval Stores Review", Savannah, Vol. 47, № 14, 1937, p 10

³ Д-р Ч. Хирти — директор лаборатории по исследованию лесных продуктов для бумажной промышленности в Савание.

4 M. Campredon, Essais mechaniques comparatifs sur le bois de pié m ritime gemmé et non gemmé, _Bois et r sineux", 1932, № 753, p. 1.

^в Испытания произведены в лаборатории национальной школы лесов и вод.

4 B samury aeca" No 5

Scanned by TapScanner

С. Я. Лапиров-Скобло

подсоченной и неподсоченной примор-

Выводы Кампредона следующие: «1) если результаты различных испытаний не указывают сколько-нибудь заметных отклонений, последние все же неизменно свидетельствуют о преимуществах подсоченной древесины главным образом в отношении сопротивления сжатию и особенно изгибу; 2) с другой стороны, и это является особенно интересным, удается проследить тенденцию улучшения древесины, в особенности в третьих отрубках, наиболее высоко расположенных в стволе, в которых древесина, образовавшаяся после начала подсочки, занимает сравнительно большую часть отрубка».

По поводу работы Кампредона следует отметить, что количество исследованных деревьев (6 подсоченных и 6 неподсоченных) является весьма малым, почему полученные им данные нельзя считать обоснованными. Кроме того, исследованию подверглись молодые деревья (в возрасте 32-39 лет), вследствие чего полученные результаты не являются показательными. В работе не имеется данных о смолистости, что надо считать серьезным упущением. Наконец, число исследованных свойств древесины нельзя считать достаточным: отсутствует например такое важное испытание, как растяжение вдоль воло-KOH 1. Рокур (H. de Raucourt)² в труде «Древесина рудничных стоек из приморской сосны (подсоченной и неподсоченной)» з сообщает результаты произведенных им исследований механических свойств рудничных стоек в натуральную их величину (2 м длины), а также малых чистых образцов.

Средние результаты опытов приведе.

			Та	блиц	9 1
Древесина	Возраст (лет)	Ширина годичного слоя в мм	Количество карр	Нагр в мо разруг н в вещоо	на единниу плошади в кг/см ² в ки и и
Подсоченная Неподсоченная	36 18	2,5	2-3 2-3	39,4 35,3	217

Рокур, основываясь на данных этой таблицы, приходит к выводу, что «подсоченная древесина обладает менее широкими годичными кольцами и повышенными механическими свойствами; она выдерживает больший груз».

На основании результатов исследова.

50

Опыты Рокура состояли в раздавливании отрубков по длине между двумя плоскостями пресса; сечения отрубков были перпендикулярны оси дерева. ния физико-механических свойств древесины Рокур констатирует, что «древесина подсоченной приморской сосны имеет преимущества по сравнению с древесиной сосны неподсоченной, особенно в отношении способности предупреждать своим треском заблаговременно о предстоящем обвале. Работа Рокура имеет, однако, настолько крупные методические недостатки, что ценность его выводов весьма сомнительна. Для исследования было взято сравнительно небольшое количество модельных деревьев: 8 подсоченных и 12 неподсоченных. Способ выбора не указан, а неодинаковое количество подсоченных и неподсоченных деревьев заставляет опасаться, что деревья едва ли были вполне сравнимы. В работе указано, что все деревья имели примерно одинаковый диаметр (15,5 см), но этот внешний признак совершенно не показателен, ибо возраст их мог быть различен, что немедленно и обнаружилось при испытании целых стоек: подсоченные деревья оказались 36 лет и неподсоченные-18 лет; ширина слоя в первом случае 2,5 мм, а во втором-4,3 мм. Между тем автор делает совершенно неожиданный вывод, что под-

Scanned by TapScanner

¹ Проф. Джонсон констатирует у подсоченной древесины заметное снижение временного сопротивления при растяжении вдоль волокон. 2 Заведующий лабораторией испытаний механических свойств древесины. 8 Жириат Волие des езих et forAts" 1925

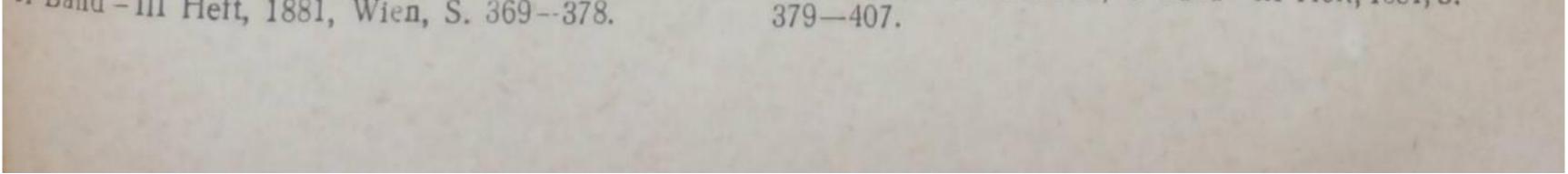
³ Журнал "Revue des eaux et forêts", 1935, № 5.

не подсочки на технические свойства древесины

соченная древесина обладает менее широкими слоями и повышенной крепостью; на самом же деле меньшая ширина в данном случае является следствием большего возраста, от которого зависит и более высокая крепость; в известных пределах для древесины сосны уменьшение ширины слоя связано с улучшением качества древесины.

Австрийская литература. Исследование Нердлингера (D-r Nördlinger) о влиянии подсочки на рост и качество древесины черной сосны¹ проведено на материале, который по существу приходится признать случайным. Не указан ни метод подсочки, ни метод отбора в насаждениях материала для испытаний технических свойств Имеются только сведения, из каких мест взята древесина для исследований. Нердлингер сообщает:

«Несколько подсоченных и неподсоченных стволов для этого опыта было любезно предоставлено руководителем опытного лесного дела д-ром Секкендорфом. Сюда вошли: 1) четыре частью подсоченные, частью неподсоченные ствола черной сосны из участка Хойсс-Шпринценштейн лесов Мизербах, расположенного на 600 м над уровнем моря, на очень крутом северном склоне с известковой песчаной почвой, поросшей вереском; 2) три ствола черной сосны, из которых один подсоченный, из участка Грассельн лесов Винер Нейштадт, расположенного на высоте 305 м над уровнем моря на равнине с наносной почвой; 3) один ствол сосны, который подвергался подсочке в течение 28 лет, взятый из лесов имения Матцендорф; кроме того, использовано было несколько старых отрубков черной сосны, полученных из казенных лесов Хинтербрюль (образцы различных методов подсочки)».


Кроме того, количество взятых деревьев во всех случаях было настолько незначительное, что они даже в общей массе (5 подсоченных и 4 неподсоченных) не могли обеспечить надежности выводов. В результате своего исследования Нердлингер обнаружил небольшое снижение крепости подсоченной древесины (на 9% при растяжении и на 4,5% при сжатии вдоль волокон). Резюмируя результаты испытаний механических свойств древесины подсоченной и неподсоченной черной сосны, Нердлингер указывает, что «в результате подсочки черной сосны образуется древесина, почти равная по своим механическим свойствам естественно образовавшейся древесине, но, повидимому, не лучшая по сравнению с последней».

Недооценка значения методики отбора материала для испытания механических свойств древесины и недопустимо малое его количество лишили исследование Нердлингера научной базы, и потому его выводы ни в какой мере не могут считаться обоснованными. Проф. Гольнер (H. Gollner) в своем отчете о проведенной работе по исследованию технических свойств древесины черной сосны¹ указывает, что «задача работы сводится главным образом к установлению возможности подобного рода исследований, выяснению наиболее целесообразных методов работы; попутно она может дать некоторый материал, дополняющий монографию о черной сосне». Исследование велось на опытной станции в Праге, причем было произведено 30 испытаний: 10 на растяжение и разрыв, 6 на сжатие, 8 на скручивание и 6 на изгиб. Никаких выводов в отношении влияния подсочки на качество древесины автор не делает. Работа Гольнера о крепости древесины черной сосны не имеет, таким образом, ни общего (характеристика крепости древесины), ни специального (влияние подсочки на крепость) значения. Ничтожно малое количество об-

51

В двух последних случаях, следовательно, не было взято неподсоченных деревьев, и потому сравнивать свойства подсоченной древесины было не с чем.

¹ H. Gollner, Ueber die Festigkeit des Schwarzföhrenholz. Mittellungen aus dem forestlichen Versuchswesen Oesterreichs, II Band-III Heft, 1881, S.

Scanned by TapScanner

¹ D-r Nördlinger, Einfluss der Harzung auf Wachstum und Holz der Schwarzföhre, Mitteilungen aus dem forstlichen Versuchswesen Oesterreichs, II Band - III Heft, 1881, Wien, S. 369--378.

С. Я. Лапиров-Скобло

разцов, взятых к тому же из случайного материала (о методе выбора модельных деревьев ничего не говорится), не может характеризовать качество древесниы вообще.

Д-р Габриель Янка в трудах по лесному опытному делу сообщает результаты произведенных им исследований влияния подсочки черной сосны на технические свойства ее древесины. Он приводит следующие показатели физико-механических свойств подсоченной и неподсоченной сосны

	Таблица 2		
Показатели	Сосна под- соченная	Сосна не- подсочен- ная	
Об'емный вес древеснны в комнат- но сухом состоянии	0,677 0,632	0,551 0,516	

древесины. Глава IV книги свойства своиства дреги деревням вопросу, вредит ли подсочка деревьям и насаждениям («Schadet die Harzung den Bäumen und dem

В ней указывается, что «исследова. ние технических свойств, эластичности и твердости подсоченного и неподсочен. ного дерева черной сосны, произведен. ное Нердлингом и Гольнером, не могло обнаружить решающей разницы в этих

Далее приводятся показатели Янка в отношении свойств древесины подсо.

ченной и неподсоченной черной сосны. Таким образом, Г. Аустервейль и Ю. Рот приводят результаты исследования проф. Янка, Нердлингера, Голь. нера. Как видно из предыдущего изло. жения, выводы Нердлингера и Янка научно не обоснованы. Гольнер же ставил задачей своей работы только вы. Іяснение методики исследования влия. ния подсочки на технические свойства

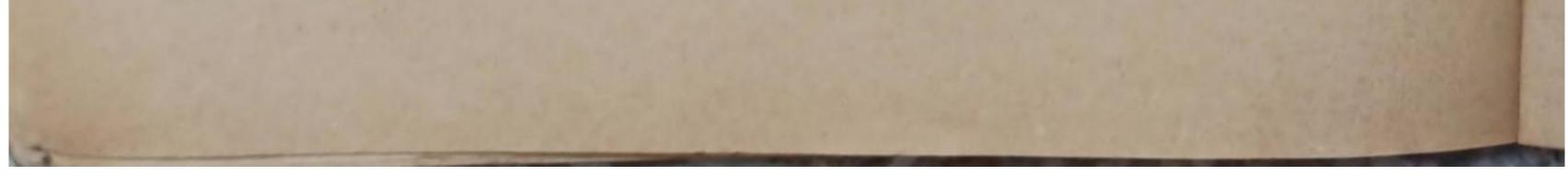
Твердость	B TO	ь вол рцев	off n	н в	кг/см	391	406
B KT/CM ³	• •					391	273

На основании этих данных д-р Янка приходит к выводу, что «древесина черной сосны благодаря подсочке сравнительно выигрывает в твердости и теряет в сопротивлении сжатию». Насколько научно обоснованы эти выводы, можно судить по примененному д-ром Янка методу отбора материала для исследования. Он исследовал всего два ствола, причем подсоченная древесина им взята из нижней части ствола, непосредственно затронутой подсочкой, а неподсоченная — из верхней части того же ствола. Ясно, что приведенные выводы Янка научно не обоснованы.

Немецкая литература. В книге Г. Аустервейля и Ю. Рота «Добывание живицы хвойных - подсочный промысел»² мы находим некоторые данные о влиянии подсочки на технические

1 D-r Gabriel Janka, Mitteilungen aus dem forstlichen Versuchswesen Österreichs, herausgegeben von der K. K. Forstlichen Versuchsans alt in Mariabrunn der ganzen Folge XXXIX Heft. Die Härte der Hölzer. Wien, 1915.

² Gewinnung und Verarbeitung von Haiz und Harzprodukten von D-r Gèza Austerweil und Julius Roth. München und Berlin, 1917.


Тюбеф (Tubeuf) в статье «О подсочке сосны» 1 указывает, что выделяемая сосной смола пропитывает верхний слой древесины, замещая в нем, в мембранах и трахеидах, испаряющуюся воду и образуя этим путем защиту более глубоких слоев древесины от испарения, высыхания, проникания воздуха и грибных спор; в практике почти неизвестны случаи заболевания подсоченной древесины. Только из одного лесничества получены были сведения о трех подсоченных соснах с явлениями синевы, проникшей вблизи места подсочки до ядра дерева. Во всяком случае это явление надо считать исключительным.

Иначе обстоит дело у ели, где подсочка оказывает более существенное влияние на качество древесины.

В книге «Die Forstbenutzung»² мы находим следующие высказывания о влиянии подсочки.

Вред от подсочки возрастает с увеличением продолжительности того периода, в течение которого производит-

² Gayer - Fabricius, Die Forstbenutzung. изд. 13-е, 1935, стр. 602.

Scanned by TapScanner

¹ Naturwissenschaftliche Zeitung für Forst- und Landwirtschaft, 1918.

Влияние подсочки на технические свойства древесины

ся подсочка, притом у разных пород в различной степени. У ели этот вред настолько значителен, что от подсочки следовало бы отказаться. У подсоченной ели появляется красная гниль, а также склонность к образованию трещин, происходящих не только во время хранения бревен, но особенно после распиловки их.

Однако наблюдения (Kienitz) 1 показывают, что непосредственного обесценения древесины вследствие извлечения из нее смолы не наблюдается, так как ядро не лишается смолы, а заболонь становится более смолистой.

Майер (H. Mayer) нашел, что удельный вес, крепость и прочность ядра не уменьшаются вследствие подсочки.

Из внешних опасностей наиболее велика возможность повреждения древесины грибными болезнями. Особенное значение это имеет для ели. Для сосны опасность невелика. Синева, например, у подсоченных сосновых деревьев наблюдается редко.

Мы выше проанализировали американские научно-исследовательские работы, на которых главным образом базируется мнение проф. В. Тищенко о влиянии подсочки на технические свойства древесины.

Проф. Н. А. Филиппов по вопросу о влиянии подсочки на технические свойства древесины высказывается в двух своих трудах. В его изданной в 1899 г. книге «Об опытах подсочки сосны в разных местностях России и о технических свойствах живицы» на стр. 3 мы читаем: «Несмотря на существующие компетентные мнения, что механические свойства дерева от подсочки не страдают (проф. Джонсон), по обычному распространенному взгляду подсочка леса считается все-таки порчей его».

В литографированном издании лекций проф. Филиппова по лесной технологии 1 указывается: «Подсочка не только не понижает техническую пригодность древесины, но, наоборот, оказывает хорошее влияние, и по мере приближения к месту ствола, несущему раны, значительно повышаются все технические качества. Тем не менее применение подсоченного леса ограничено лишь специальными предназначениями его на шпалы, шахтные подпорки, телеграфные столбы, торцы для мостовых и пр. Пиленые сортименты получают из подсоченной приморской сосны, но такие доски не могут итти для столярных надобностей, для употребления в отапливаемых помещениях и под окраску, если они получены из части ствола, которая просмолилась на месте расположения ран. Для устройства же, например, черных полов, холодных построек пильные сортименты из подсоченного леса даже предпочитаются, так как пропитывание заболони смолой сообщает подсоченному лесу лучшую сопротивляемость гниению. В 1874 г. был произведен опыт постановки забора из подсоченных и неподсоченных деревьев, причем столбы из подсоченного. леса

53

Указанные замечания Кинитца (Кіеnitz) и Майера (H. Mayer) не подкреплены, однако, данными экспериментальных исследований.

Отечественная литература. В капитальном труде проф. В. Тищенко «Канифоль и скипидар»² мы находим данные о влиянии подсочки на технические свойства древесины. Проф. Тищенко экспериментальных работ не производил. Он приводит результаты исследований, произведенных лесным отде-США лом департамента земледелия под общим руководством начальника отдела д-ра Б. Э. Фернова, проф. Джонсоном (J. B. Johnson), д-ром Гомбергом и д-ром Т. Рот. На основании этих работ проф. Тищенко делает следующий вывод: «Американские исследования вполне согласно с выводами Майера доказывают, что от подсочки мертвая древесина хвойных нисколько не порсмолы не теряет» тится, так как (стр. 24).

¹ Die Kiefernharzung in Deutschland, 1923.

² В. Тищенко, Канифоль и скипидар, Подсочка хвойных и переработка живицы в Соединенных штатах Северной Америки и других государствах, Добывание терпентина, скипидара и канифоли, их свойства, химический состав и применение, 1895.

¹ Проф. Н. А. Филиппов, Лесная технология, VII-Подсочка хвойных пород и переработка живицы. Лекции составил В. А. Петровский, изд. бывш. Петерб., лесн. ин-та, 1911, стр. 27.

Scanned by TapScanner

оказались в четыре раза более долговечными».

Никаких данных об экспериментальных работах по исследованию технических свойств древеснны подсоченной сосны мы в этом труде ие находим. Ясно, что один высказывания проф. Филиппова не могут быть признаны достаточными для решения вопроса о качестве древесины подсоченной сосны.

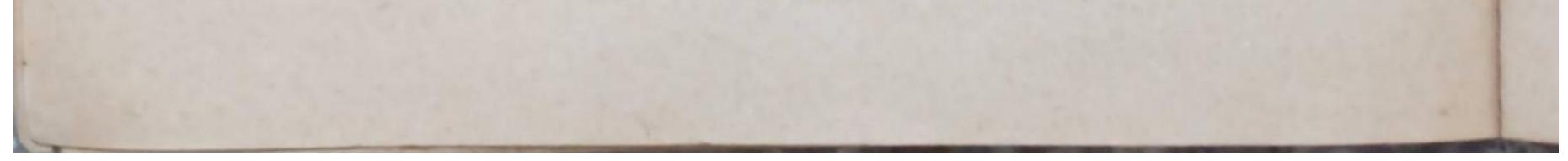
Проф. В. И. Лебедев в своем труде «Подсочка хвойных и подсочные хозяйства»¹ касается и вопроса о влияини подсочки на технические свойства древесины (стр. 79—81). Он никаких экспериментальных работ по этому вопросу не производил, но, базируясь на исследованиях проф. Д. Б. Джонсона и проф. Н. А. Филиппова² (о которых мы уже говорили), указывает, что «технические свойства древесины при подсочке повышаются» (стр. 80).

Инженер Н. И. Тихомиров в труде «Технические свойства древесины сосны» а излагает результаты исследования влияния трехгодичной подсочки сосны по американско-немецкому способу на технические свойства ее древесины. На основании исследования 11 модельных деревьев подсоченной сосны и 9 контрольных неподсоченных деревьев Н. И. Тихомиров приходит к выводу, что «подсоченная древесина по своим техническим свойствам на твердость не ниже древесины, не подвергнутой подсочке. На сжатие, изгиб и растяжение подсоченная древесина имеет некоторое снижение нагрузок по сравнению с древесиной неподсоченной» (стр. 111). По поводу работы Н. И. Тихомирова необходимо отметить следующее: 1) исследованию подверглась сосна только трехлетней подсочки по смешанному американско-немецкому способу; влияние других методов подсочки на технические свойства сосны не изучалось; 2) распределение модельных деревьев подсоченных (11) и неподсоченных (9)

по классам, бонитстам и возрастам не дает материала для объективных сравнений и выводов: для характеристики 9 видов насаждений (Зкласс бонитетах ХЗ класс возраста) взято 9 моделев неподсоченных деревьев и 11 моделев подсоченных деревьев, т. е. в среднем по одной модели (подсоченной и неподсоченной) на насаждение. Полученные данные (показатели физико-механических свойств) недостаточно обработаны: вычислены только пределы колебаний и средние величины. Достовер. ность показателей не вычислялась. Кроме того, отсутствует анализ материала и не делалось почти никаких попыток к увязке коэфициентов физико-механических свойств древесины с ее анатомическими свойствами; между тем последние также могли повлнять на размеры показателей.

Учитывая приведенные замечания, следует признать, что работа Н. И. Тихомирова ни в коей мере не разрешила вопроса о влиянии различных методов подсочки сосны на технические свой-

¹ Проф. В. И. Лебедев, Подсочка хвойных и подсочные хозяйства, Севкрайгиз, 1933.


2 Проф. Н. А. Филиппов, Подсочка хвойных и переработка живицы, 1911.

³ Инж. Н. И. Тихомиров, Технические свойства древесины сосны в связи с временем заготовки и в связи с подсочкой, Гослестехиздат, Свердловск, 1932. ства ее древесины.

Проф. И. Яхонтов в своем труде «Исследование подсочки сосны и ее влияния на прирост, плодоношение и технические свойства древесины» 1 при суждении о влиянии подсочки на физико-механические свойства древесины исходит из предпосылки, что «подсочка, которую применяют за 3-5 лет до рубки дерева, хотя бы и в интенсивной форме, конечно, ни в коем отношения не может изменить анатомического строения древесины за предшествующее время; если она имеет истощительный характер, то может уменьшить летнюю часть годичного кольца лишь за те годы, когда ее применяют, т. е. за последние 3-5 лет или в период вслед за подсочкой».

В соответствии с этим положением проф. Яхонтов в отношении физико-механических свойств древесины подсоченной сосны ограничился исследованием, результаты которого являются скорее иллюстративным материалом, а

¹ И. Яхонтов, Дослідн с підсочення сосни та выявления впливу на приріст, овочування та технічні. властивості, Серія наук видань Укр. Зап. Наук. Досл. інст. ліс. госп. та пром., 1931.

Scanned by TapScanner

Влияние подсочки на технические свойства древесины

не данными для всестороннего решения затронутого вопроса. Количество исследованных модельных деревьев было незначительным (всего 6 подсоченных и 6 неподсоченных), и они характеризовали 4-5-летнюю подсочку в двух лесничествах (по три дерева подсоченных и три неподсоченных в каждом лесничестве). Кряж для исследований вырезался в одном месте ствола — над каррой, число видов испытаний было весьма ограниченным и сводилось к определению объемного веса, сопротивления сжатию вдоль волокон и твердости.

Проф. Яхонтов констатирует, что «говорить об отрицательном влиянии подсочки на объемный вес и сопротивление сжатию нет оснований» и что «в среднем просмоленная часть древесины всех деревьев оказалась несколько более твердой, чем непросмоленная за тот же период». В отношении остальных свойств проф. И. Яхонтов замечает, что существующая между ними связь позволяет по определенным свойствам судить и об остальных. Но автор упускает из виду, что упомянутая связь обычно обнаруживается только для ограниченного числа свойств. Такие практически важные свойства, как сопротивление скалыванию, растяжению и особенно ударному изгибу, обнаруживают весьма невысокую степень связи с легко определяемыми свойствами (объемный вес, сопротивление сжатию, твердость), вследствие чего при исследовании нуждаются в самостоятельном определении. Кроме того, можно предполагать, что подсочка вносит некоторые изменения в закономерности, наблюдаемые для неподсоченной древесины, вследствие чего возможность распространения их на подсоченную древесину нуждается в проверке. Пропитка древесины искусственными смолами обычно ведет за собой сниже. ние сопротивления ударному изгибу; так как при подсочке наблюдается повышение смолистости, то можно ожидать, что это явление также окажет влияние на сопротивление ударному изгибу, которое имеет весьма большое значение при ответственном применении древесины (авиастроение). Эти вопросы, равно как и другие, им подобные (например коэфициент качества подсоченной древесины в зависимости от смолистости), в работе проф. Яхонтова совершенно не освещены.

55

Из изложенного ясно, что полученные проф. Яхонтовым данные нельзя считать достаточными для решения вопроса о влиянии различных методов подсочки сосны на технические свойства древесины.

Доцент Ю. С. Быченко для определения влияния подсочки на технические свойства древесины сосны¹ исследовал 50 модельных деревьев сосны, из которых было взято 94 двухметровых отрубка. Модельные деревья взяты на шести пробных площадях, две из которых были заложены в Житомирском лесничестве, а остальные — в Первомайском лесничестве Киевской области.

В первом лесничестве подсочка велась (с 1919 по 1925 г. включительно с двухгодичным перерывом) по староамериканскому способу с карманами, а

во втором — по старо-американскому способу с усами (подсочка проводилась с 1923 по 1930 г. включительно с однолетним перерывом).

В результате экспериментальной работы автор приходит к следующим выводам:

«Влияние подсочки зависит от метода и продолжительности подсачивания. Чем рациональнее метод, тем дольше может продолжаться подсочка, не оказывая влияния на технические свойства древесины. Подсочка по староамериканскому методу, проводимая в течение семи лет, не дала снижения свойств. Подсочка по тому же методу, но с постепенной закладкой карр. в течение того же срока повысила главнейшие физико-механические свойства на 5-7%. Предельным сроком подсочного периода при долговременной подсочке «на-жизнь» нужно считать семь-десять лет; такой же срок нужно установить и для подсочки «на-смерть». После указанного периода подсочка отрицательно влияет на свойства древесины, и поэтому насаждение либо должно поступать в рубку либо оставлено для отдыха» (стр. 67).

¹ Ю. С. Быченко, Влияние подсочки на свойства сосны, Гослестехиздат, 1935.

Scanned by TapScanner

С. Я. Лапиров-Скобло

Далее указывается, что смолистость подсоченной сосны увеличивается в оболони на 30%, а в ядре на 70%. Смолистость же просмоленной комлевой колистость же просмоленной комлевой и в местах расположения карр в пять-десять раз больше смолистости в методическом отношении работа

Ю. С. Быченко выгодно отличается от других работ как наших, так и иностранных на эту тему не только бо́льшим количеством материала для исследования, но и методами отбора отдельных деревьев, испытания физико-механических свойств древесины и обработки результатов.

Основной недостаток работы заключается в том, что образцы для испытаний высушивались в сушильном шкафу до абсолютно-сухого состояния и перед испытанием сохранялись в эксикаторах. Соотношение коэфициентов крепости древесины (подсоченной и неподсоченной) в абсолютно-сухом состоянии может быть не идентичным таковому же соотношению при влажности в пределах 8-15%. Кроме того, по имеющимся данным крепость древесины при влажности, близкой к абсолютно-сухому состоянию древесины, неустойчива и далеко не всегда максимальна. Поэтому нет основания согласиться с утверждением автора, что испытания в комнатно-сухом состоянии с последующим приведением к 15% влажности дали бы большую погрешность. Способы обработки полученных автором данных путем редуцирования величин коэфициентов в целях их сравнимости (сравнение по зонам) все же не могут гарантировать верности скорректированных показателей и, следовательно, достоверности наблюдавшихся разниц в технических свойствах подсоченной и неподсоченной древесины. Анализируя работу Ю. С. Быченко, можно сделать следующие выводы: 1) исследование касается лишь одного вида подсочки (староамериканского); 2) в методическом отношении работа не безупречна (испытание древесины в абсолютно-сухом состоянии и др.); 3) не исследовано влияние подсочки на выход пиломатериалов (на количество и качество), на процессы деревообра-

ботки, а также на качество изделий из подсоченной древесины, способность окраски, полировки и др. Таким образом, работа доцента Ю.С. Быченко недостаточна для решения практических вопросов о влиянии различных методов подсочки на технические свойства древесины и о применении подсоченной древесины. Проф. С. И. Ванин указывает, что «вопрос о влиянии подсочки на механические свойства древесины имеет большое практическое значение; ввиду этого был произведен ряд исследований по выяснению технических свойств подсоченной древесины. Эти исследования показали, что механические свойства древесины при подсочке или остаются без изменения (Яхонтов), или слегка увеличиваются (Джонсон, Фи-

липпов, Янка), или слегка понижаются (Тихомиров)»¹. Далее он приходит к выводу, что «разноречивость приведенных данных

56

заставляет отнестись к ним осторожно и требует для окончательного решения вопроса дополнительных, тщательно поставленных в методическом отношении исследований».

В результате рассмотрения упомянутых 23 работ по вопросу о влиянии подсочки на технические свойства древесины сосны можно сделать следующие выводы.

1. До сих пор технические свойства древесины подсоченной сосны изучены совершенно недостаточно. Исследования охватывают ограниченный круг вопросов (в основном изучались только механические свойства древесины) при некоторых частных случаях подсочки.

2. Выводы исследований противоречивы (Яхонтов, Быченко, Джонсон, Филиппов, Тихомиров).

3. Недопустимо малое количество материалов для исследования (это относится ко всем исследователям, кроме Ю. С. Быченко) приводит к выводам, недостаточно обоснованным; кроме того, все иностранные работы имеют

² Мы ограничились рассмотрением только наиболее интересных работ: 8 американских, 2 французских, 3 немецких, 3 австрийских и 7 отечественных.

Scanned by TapScanner

¹ Проф. С. И. Ванин, Древесиноведение, Гослестехиздат, Ленинград, 1934, стр. 288.

Осушение болот в лесах водоохранной зопы

один общий недостаток: результаты испытаний не обрабатывались методом вариационной статистики, вследствие чего нельзя судить о степени достоверности выявленных различий.

4. Наиболее известная американская работа проф. Джонсона (J. B. Johnson), на которую все авторы, как правило, ссылаются в подтверждение своих высказываний о положительном влиянии подсочки сосны на технические свойства древесины, имеет очень крупную методическую ошибку: сравнение качества подсоченной и неподсоченной древесины производилось по образцам из разных районов. Это обстоятельство по существу лишает выводы Джонсона какой-либо ценности, так как сравнимость данных для обоих родов древесины Ейчем не доказана. 5. Исследование Ю. С. Быченко касается одного вида подсочки, и в методическом отношении оно не безупречно, поэтому эта работа недостаточна для решения практических вопросов о влиянии различных способов подсочки на технические свойства древесины и о применении подсоченной древесины.

6. Необходимо тщательно в методическом отношении изучить технические свойства древесины подсоченной различными способами сосны.

Только путем методически правильно поставленного исследования мы установим наиболее приемлемые способы подсочки с точки зрения сохранения, а может быть и повышения технических свойств древесины и пути рационального применения подсоченной древесины в зависимости от методов подсочки.

ОСУШЕНИЕ БОЛОТ В ЛЕСАХ ВОДООХРАННОЙ ЗОНЫ *

И. М. ТКАЧЕВ

В лесах нашей страны имеется свыше 36 млн. га болот (7% лесной территории), в том числе в лесах водоохранной зоны около 5 млн. га, или свыше 9% всей площади¹. На территории лесов с избыточным увлажнением необходимо провести ряд регулирующих мероприятий для рационального распределения баланса влаги. Среди этих мероприятий должно занять определенное место осушение заболоченной лесной территории. Для решения этой проблемы требуется исследование ряда вопросов.

В лесах водоохранных эти исследования должны быть поставлены значительно шире, чем в других районах, так как здесь речь идет не только о повышении производительности лесонасаждений, но главным образом об основах регулирования водного баланса болот, о выяснении влияния мелиора-

* По материалам лаборатории гидрологии МНИИЛХ.

1 Заболоченность лесной территории Швеции составляет 12,5%, а Финляндии — 35,7%. ции лесов на изменение режима рек и об установлении техники осушительных работ. Необходимо в третьем пятилетии изучить целый комплекс вопросов, связанных с изменением режима бассейнов рек в зависимости от степени заболачивания и степени осушения заболоченной территории лесных массивов.

Огромные запасы воды, содержащиеся в болотах, должны быть использованы для нашего народного хозяйства при активном воздействии человека с возможно большим эффектом. В первую очередь надо предусматривать улучшение водного режима бассейнов рек.

Водные запасы в болотах не везде одинаковы и зависят от характера залегания болот и их типов. Некоторые исследователи (проф. Вебер, Сукачев, Доктуровский, Дубах) все болота делят на четыре основные группы: низинные болота (Niederungsmoor), характеризующиеся растительным покровом из камышей, тростников, хвощей, осок,

Scanned by TapScanner

И. М. Ткачев

злаков, разнотравья и гипновых мхов, а также иногда зарослей ивы и ольхи; переходные (Übergangsmoor), —покрытые лесной растительностью; верховые (Hochmoor), — покрытые мхами-сфагнумами, и комплексные болота, на которых типы растительного покрова мозаично меняются на незначительных

Основными причинами заболачивания территории, в частности лесной, являются следующие факторы: 1) понижение дренирующих свойств почвогрунтов и нарушение влагооборота их в результате сплошных вырубок значительных площадей леса, а также в результате лесных пожаров, уничтожающих всякую растительность и прекращающих транспирацию; 2) изменение гидрологического режима территории и уменьшение естественной канализации заболоченной территории; 3) почвенногеографические условия местности и 4) смена растительного покрова.

Вопросом понижения дренирующих свойств почвы и заболачивания лесной

явлениям экзодинамическим, т. е. получающимся в результате воздействия че ловека на природу, и явлениям эндодинамическим, вызываемым самой природой растительных группировок, сменой растительности.

Приведенные взгляды, в общем, сводятся к тому, что в результате вырубки древесной растительности в условиях равнинных площадей резко нарушается влагооборот, прекращается транспирация почвенно-грунтовой воды, повышается влажность почвы и, таким образом, создаются благоприятные условия для заболачивания. Однако до сих пор не определен размер вырубки, который обусловливал бы активный процесс заболачивания и распространения этого процесса на площадь, покрытую лесом. Можно лишь предполагать, что резко выраженный процесс заболачивания происходит, повидимому, после сплошной вырубки значительных лесных площадей.

Заболачивание может итти также путем разрастания сфагнового покрова в лесу среди крупных деревьев, среди черники, брусники. В этом случае процесс заболачивания лесов может происходить вне связи с прилегающими болотами: при обеднении почв кислородом лес может превратиться в моховое сфагновое болото. Начало проведения крупных осущительных работ в России относится к 1874 г., когда был организован ряд экспедиций по осушению болот. Особенно были развиты работы западной экспедиции, деятельность которой продолжалась до 1898 г. За 25-летний период экспедицией были проведены значительные по тому времени работы, в том числе осушено свыше 195 тыс. га казенных лесов. Влияние осушения распространилось на площадь свыше 270 тыс. га казенных лесов. Но в дореволюционную эпоху, при отсутствии какой бы то ни было плэновости не могло быть и речи о систематических осущительных работах в больших масштабах. Лесовладельцы осушением лесных массивов имели в виду лишь повысить доход со своих лесов. Осушительные работы проводились без надлежащего научного обоснования, в связи с чем возник ряд предпо-

территории занимались у нас многие исследователи: проф. Отоцкий, проф. Анри, проф. Дубах, акад. Вильямс, проф. Высоцкий и др. Все они утверждают, что сплошные вырубки леса отрицательно влияют на дренирующую способность почвы. Заболачивание лесной территории в зависимости от концентрации рубок описано проф. Дубахом, который указывает, что система концентрированных рубок способствует повышению влажности почвы, иногда доходящей до состояния выклинивания. грунтовых вод на поверхность почвы и дающей начало процессу ее заболачивания. Акад. Вильямс указывает, что смена растительности играет не малую роль в создании процессов заболачивания на хорошо дренированных почвах таких типов леса, как сосняк-черничник, ельник - черничник, ельник - кисличник. Проф. Доктуровский описывает аналогичный процесс заболачивания территории после уничтожения леса. При этом он указывает, что плотность дернин на лесосеках достигает такого состояния, что служит препятствием для возобновления и развития древесной растительности. Проф. В. Н. Сукачев, в общем, все явления заболачивания относит к

Scanned by TapScanner

Осушение болот в лесах водоохранной зоны

ложений об отрицательном влиянии осущения, влекущего якобы иссущение климата и обмеление рек.

Такого рода взгляды поддерживались гидрологическим отделом экспедиции по изучению главнейших истоков рек Европейской России (С. Н. Никитин). Однако позднейшие исследования акад. Оппокова опровергли эти воззрения С. Н. Никитина. Вопросы, касающиеся изучения болот, акад. Оппоков разделяет на две основные группы: 1) изучение гидрометеорологического режима и 2) изучение гидрологической роли болот.

Характеризуя гидрометеорологический режим болот, акад. Оппоков указывает, что впервые этот вопрос поставлен немецкими болотными станциями, которые дали ряд весьма интересных результатов. Так, Бременская болотная станция на основании многолетних наблюдений отмечает понижение температуры на болотах по сравнению с суходолами. Частое повторение на болотах заморозков является следствием потери ими тепла. Сравнительные данные распределения температуры на болоте и суходоле, полученные Ефимовой, устанавливают наличие более резких колебаний температуры на болоте при сопоставлении их с колебаниями температуры на суходоле. Отмечается также значительно более интенсивное испарение с болот по сравнению с суходолом, что указывает на более высокую температуру на болоте, чем на суходоле. Проф. А. Д. Дубах в своих работах указывает, что амплитуда колебаний температуры на поверхности торфяного болота за вегетационный период значительно больше, чем на минеральном грунте, и еще больше, чем амплитуда колебаний температуры воздуха; весенние заморозки на поверхности торфяного болота являются значительно более длительными, чем на минеральном грунте, а осенние начинаются раньше; глубина промерзания торфяного грунта меньше, чем суглинистого, и оттаивание торфяного грунта происходит позже, чем минерального, в пределах примерно 6-25 см.

K

C-

1-

C-

-0

e-

a-

B

га

-D'E

70

ри

na-

те-

B

цы

ви-

ле-

ИСЬ

пературном режиме относятся главным образом к территории открытой, безлесной. Поэтому в дальнейшем исследования температурных условий режима болот должны быть сосредоточены в лесу, и наблюдения должны проводиться как на заболоченном пространстве, так и суходоле водоохранных лесов.

Вопросами испарения поверхности болот занимались многие исследователи: Вольни, Оппоков, Дубах, Брудастов, Бременская и Новгородская опытные станции и др. Все исследователи приходят к общему выводу о высокой испарительной способности торфяных болот. Однако вопросы испарения ими также рассматривались вне связи с лесом и задачами водоохраны.

Вопросу изучения поверхностного стока уделялось значительно больше внимания, чем вопросам температуры, испарения и транспирации болот. Особенно настойчиво выдвигается вопрос изучения стока с заболоченных площадей в период наиболее интенсивного развития осущительных работ. Сравнительное изучение и качественная характеристика величины стока с болот проводились в зависимости от почвенногрунтовых условий, степени заболоченности бассейна и степени осушения. В вопросах стока нас интересует величина весеннего и летнего стока с лесоболотной площади и взаимная связь их в зависимости от величины выпадения годовых осадков и распределения их по времени. Литературные данные указывают, что непрерывность стока воды, хотя бы и очень малого, более обеспечена с болотных бассейнов, чем с бассейнов глинистых и суглинистых. Однако не установлено, кроется ли основная причина непрерывности стока с болот в свойствах самого торфа или здесь имеет место сток воды с соседних площадей с минеральным грунтом. Учитывая недостаточность данных для выводов о величине стока с болот, приходим к выводу о необходимости длительного наблюдения над элементами стока на лесоболотной площади в лесах водоохранной зоны и сопоставления величин весеннего и летнего стока как с нетронутой лесоболотной площади, так и прорезанной водостоками. Вме-

59

по- К сожалению, приходится констати-

Scanned by TapScanner

И. М. Ткачев

1 2 1 1

сте с тем необходимо исследовать вопрос зависимости величин весеннего и летнего стоков с лесоболотных площадей.

Зимний режим лесоболотных площадей до последнего времени изучался совершенно недостаточно. В то же время этот вопрос для лесных территорий имеет большое значение. В литературе этот вопрос освещен весьма слабо, и то главным образом для области тундр. Изучением зимнего режима болот частично занималась экспедиция по изучению истоков главнейших рек Европейской России, которая дает некоторые указания о зимнем режиме. В частности в ее трудах указывается, что болота долее задерживают весеннее таяние снегов и промерзают на меньшую глубину, чем суглинистые грунты.

Центральное место проблемы регулирования баланса влаги территории водоохранных лесов занимает вопрос о регулировании грунтового питания водоприемников лесоболотных бассейнов. Для решения его необходимо знать законы и условия движения грунтовых вод лесоболотной территории, колебания их горизонтов в зависимости от различных факторов, движение их в самой толще торфа и поступление в водоприемники. Известно, что часть выпавших осадков испаряется обратно в атмосферу, часть стекает в виде поверхностного стока и остальная часть просачивается в грунт. Количественное соотношение величин испарения поверхностного и прунтового стока почти совершенно не изучено. В литературе по этому вопросу высказываются предположения, что из общего количества выпавших осадков 85% испаряется. Но есть и другое указание, что испарение выпавших

осадков составляет 90—95%, остальное количество стекает.

5- - H

- - . .

Приведенные в настоящей статье данные указывают на недостаточность изученности вопроса об осушении заболоченных лесных территорий.

Результаты производившихся до настоящего времени наблюдений над температурным режимом относятся главным образом к территории открытой, безлесной. Производившиеся наблюдения над стоком весьма различны по условиям, как правило, кратковременны и находятся вне связи с лесоболотной

B соответствии с поставленными перед Главлесоохраной законом от 2 июля 1936 г. задачами необходимо изучение лесоболотных площадей поставить на должную высоту. Исследования по данному вопросу должны быть организованы по тщательно разработанной методике и охватывать достаточно длительный период времени. Основными вопросами, подлежащими исследованию, следует считать изучение причин и степени обеспечения непрерывности стока с лесоболотных площадей для питания рек данного бассейна, в частности определение размеров весеннего и летнего стока лесоболотных площадей, изучение их взаимозависимости; изучение зимнего режима лесоболотных площадей; исследование явлений испарения с поверхности и прунтового стока в заболоченных лесах водоохранной зоны в связи с количеством выпадающих осадков.

Изучение всех перечисленных вопросов будет иметь большое практическое значение для разрешения проблемы осушения болот в лесах водоохранной зоны.

Scanned by TapScanner

0

M

VI

Bb

CT

H3 NG

TO.

KO

новости науки и техники

ВЗАИМНОЕ ВЛИЯНИЕ РАСТЕНИЙ

Проблема влинния одного растения на другое получила новое освещение в недявния работах американских исследователей и австрийского физиолога Молиша (Molisch'), Последний считает, что выделяемые одним растевнем асщества оказывают стимулирующее или тормозницее действие на другое растение. В виде прамеров в работе Молиша описывается разнообразное влияные выделяемых яблоками газов: газы эти влияют угнетающим образом на рост стебля в длину, способствуют сго утолщению, задерживают прорастание семия, ускоряют созревание плодов, вызывают опадение листвы, способствуют пробуждению почек или задерживают его и т. д.

Приводим результаты некоторых поставленных Молишем в этом изправлении опытов,

Под стеклянным колпаком помещались на разные сроки (от 12 час, до 18 дней) яблоки и черенки черного тополя. Оказалось, что рост черенков тополя задерживается, а образование каллюса идет вначительно лучше; у растений, находявшихся 15 дней под колоколом, образовался очень сильный каллюс.

Ветки сирены и конского каштана выдерживались вместе с яблоками под стеклянным колоколом в течение 24 час., причем наблюдалось усиленное развитие почек по сравнению с контрольными растениями. Надаемение органы растений в естественных условиях не могут оказать большого влияния на прорастание, так как выделяемые газы дмффундируют и уносятся потоками воздуха, фундируют и уносятся потоками воздуха, Иначе обстоит дело с газообразными выделеинями корней, и эдесь предстоит широкое появ аниями корней, и эдесь предстоит широкое появ для дальнейших исследований, результаты которых могут представить практический интерас для лесоводства,

ТЕОРИЯ ГОРМОНАЛЬНОГО РАЗВИТИЯ РАСТЕНИЙ

В нашем журнале (№ 3 за 1938 г.) уже приводились данные о том большом практическом для лесного хозяйства значения, которое имсют научные исследования по вопросу о гормонах роста, о возможности синтетическото их приготовления и использования при черенковании древесных пород. Не меньшее, вероятно, значение будет принадлежать и результатам научных работ о гормоне цветения растений, о «флоригене».

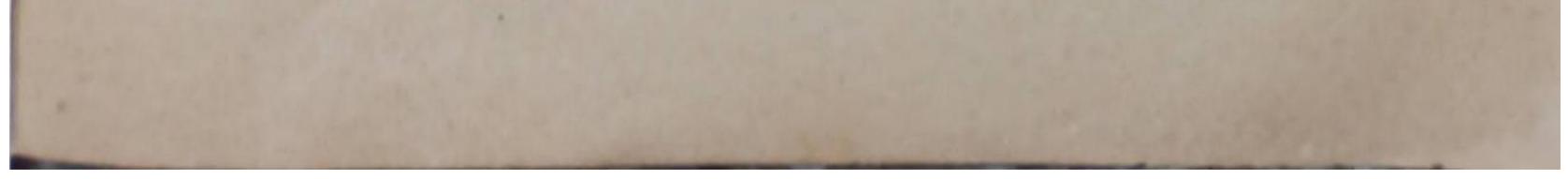
Мы сообщаем здесь в самой краткой форме новейшие достижения по этому вопросу, пользуясь онубликованными в 1937 г. работами советского физиолога М. Х. Чайлахяна, основанными на его собственных экспериментальных

У желтой акадии после четыреждневного пребывания под колоколом с яблоками отпали не только листья с несущими их черсшками, но и отдельные листочки.

Пыльща мекоторых растемий в капле сахарного раствора помещалась при отсутствии света под колоколом, воздух в котором был насыщен влагой; одновременно там же были подожены два яблока. Пыльца под колоколом стала прорастать значительно скорсе, чем в условиях контрольного опыта.

Результат этого последнего эжсперимента объясняется тем, что яблоки при дыхании выделяют много углекислоты, последняя же подкисляет реакцию раствора, в котором находится пыльца, и стимулирует се прорастание.

В числе различных газообразных веществ, выделяемых яблоками, активную роль играет этилен. Наличие этого газа, уже давно ис. пользуемого садоводами для ускорения созревания плодов, в «яблочном воздухе» экспериментально установлено, и американские ботаваны описывают технику количественного определения выделяемого яблоками этилена.


Как влияет этот этилен, неизвестно. Возможно, что он действует на ростовые вещества, увеличивая или уменьшая содержавие их или вызывая их приток в определенные части растений.

Действие груш и некоторых других плодов из семейства розоцистных равноценно влиянию яблок. Подобное же влияние оказывают не только плоды, но и газообразные выделения корней растений, клубней побегов, цветов, исследованнях и на учете иностранного опыта. Основные выводы М. Х. Чайлахяна сводятся

к следующему. Свет ускоряет половое развитие растений; они становятся восприимывыми к действию света с момента появления первого веленого листа и сохраняют эту восприимчивость во всяком возрасте, Процесси, ведущие к цветению и образованию плодов, проходят в листовых тканях; формообразующие процессы, проходящие в точках (зонах) роста, предстваляют собой вторичные изменения, определяемые функциональной деятельностью листьев, Процессы полового развития возниклют и протекают в растительных тканях исзачисимо от темпов роста растений. Рост растений зависит от накопления в них строительных веществ и от продукции ростовых гормонов. Половое созревание растений, их цветение и плодоношение от этого не зависят.

Гормон цветения возникает в листьях и движется к точкам роста в любом возможном направлении. Поредвижение гормона из листьев может происходить только при наличии точек роста. Различие в сроках наступления цветения и плодоношения растений (в том числе и древесных) зависит от разной способности их к образованию и накоплению гормонов цветения. Опыты прививок показали, что вместе с питательными веществами снизу, из листьев подвоя у точкам роста верхушки привоя, движется гормон цветения, который и вызывает здесь появление цветов.

Образование гормона, обусловливающего цветение и плодовошение растений, происходит при тех условиях светового режима, в сочетании с другими факторами среды, к которым приспособилось данное растение в процессе

Scanned by TapScanner

вволюции. При отклонении от этих условий продукция гормона снижается и цветение растений задерживается. Гормон цветения имеет общую природу для разных растений.

При налични благоприятных условий для роста растений и независимо от его темпов в мистьях возникает гормон адестемия, который движется к точкам роста и вызывает здесь образование цветов. Но для этого необходимо определенное количественное накопление гор. мона цветения в листьях и затем в точках роста. Какие именно клетки листовых тканей или клеточные элементы играют здесь преобладающую роль, пока не ясно; во всяком случае листья можно считать своеобразными «эндокринными железами», от деятельности которых зависит половое созревание растений.

У растений, как и у животных, наблюдается иногда наступление преждевременной половой эрелости, зависящее от определенного сочетания внешних условий, вызывающих усиленное образование в листьях цветообразующих гормонов. Это так называемые «ювенильные» формы (2—3-летние сеянцы некоторых древесных видов, как известно, иногда зацветают). Гормон цветения вызывает не только образование цветов, но и дальнейшие процессы, ведущие к образованию семян. Следовательно, гормон цветения — это половой гормон растений.

Количестве, чем больше листьев имеется у ра-

цветение растений в результате прививок

Как известно, лутем прививки сеницев в крону варослых деревьен можно достигнуть ускоренния их цветения (оно наступает на третий илы четвертый год после прививки), Наиболее распространенным объяснением этого ускорения ивлистся несоответствие между корненым и воздущиным питанием как оледствие неправилы ного срастания привоя с подвоем, Физиолог Б. С. Моннком на основании своих исследова» ний считает, что, используя действие листьев подвоя для перемещения цветообразующих нещести в привой, можно получить эффект в 1-2 года при правильной методике прививки и дальнейшем уходе. В этой области предстоит еще дальнейшие плодотворные наыскания, «но уже и сделанное, - указывает Б. С. Мошков,позволяет с уверенностью говорить о новых путях в овладении развитием растений», В сиязи с этим перед лесоводами открываются перспективыт не только ускорения процессов лесной селекции, но и усиления и ускорения плодоношения семенных деревьев.

ПРИМЕНЕНИЕ РОСТОВЫХ ВЕЩЕСТВ ПРИ ЧЕРЕНКОВАНИИ

В Центральном научно-исследовательском институте лесного хозяйства Д. А. Комиссаровым под руководством проф. Л. А. Иванова проведены в 1936-1937 гг. опыты применения ростовых веществ при укоренении древесных череиков. Концентрация водных растворов была от 6,02 до 0,001%. Растворы содержали синтетические ростовые вещества и всасывались черенками в течение 6-72 чис. через нижние срезы путем транспирации. Затем летние черенки пысаживались в песок в холодный нарник. Наибольший интерес для практики представляют результаты, полученные в отношении не черенкующихся обычным способом древесных видов: летние черенки их обрабатывались в течение 12-32 час. В-индолилуксусной кислотой при концентрации водного раствора 0,005-0,010%. При этом оказалось, что черенки козьей ивы (Salix caprea) укоренились в количестве 85%, черенки березы бородавчатой (Betula verrucosa) — в количестве 25%, серебристого клена (Acer dasycarpum) - 56%, дуба черениятого (Quergus pedunculata) — 34%, лиственницы сибирской (Larix sibirica) - 25%. На время распускания почек ростовые нешества не оказали заметного влияния, но дальнейший рост побегов шел весьма энергинчо. Удалось выяснить, что в коре черенков ростовые вещества претерпевают тлубокие изменсния и что причиной этих изменений является не простое химическое взаимодействие с веществами клеток коры, а какие-то сложные физиологические процессы. Специальной серией опытов было установлено, что надо считать пока из выясиенными внутренние причины неодинаковой способности близких древесных видов а размножению стеблевыми черенками и тричины неодинакового стимулирующего действия ростовых веществ на корнеобразование.

62

стения; переходя в стебли, гормон движется по коре, а не по древесиниой части. Образование гормона цветения, взаимодействие его с другими веществами и влияние на обмен веществ в растениях представляют собой совокупность сложных биохимических процессов, природа которых пока неизвестиа. Ввиду того что основной функцией этого гормона является образование цветов, можно сго назвать флоригеном, т. е. цветообразователем. Подобно тому как ауксин (ростовой гормон) является регулятором ростовых процессов, флоритен регулирует процессы полового развития растений. Но ауксин, образуясь в верхушечных точках роста, оттуда распространяется по растечию, флоритен же, образуясь в листьях, перелвигается к точкам роста. Образующийся в листьях флориген откладывается в ветвях и почках деревьев; на это указывает тот факт, что многие деревья зацветают весной до появления листьев. Очень важное в деле селекции древесных ускорение цветения и плодоношения их может быть достигнуто использованием флоригена взрослых плодоносящих деревьев того же вида путем прививки в крону их гибридных сеянцев. Но так как при этом флориген будет двигаться к побегам и точкам роста ветви-подвоя, необходимо изменить его направление и направить его в привитой глазок или черенок, для чего следует оставить все листья на ветви-подвое и удалить на ней все побеги как имеющиеся, так и появляющиеся после.

Этот последний вывод, вытеквющий из исследовательской работы М. Х. Чайлахяна, может иметь уже чисто практическое значение, которое будет возрастать, если удастся выделить и получить в чистом виде препарат флоригена или искусственно его изготовлять.

Scanned by TapScanner

ХРОНИКА

В ГЛАВЛЕСООХРАНЕ

В саязи с маступлением опасного в пожарном отношения периода Глявлесоохраной принят ряд мер предупредятельного язрактера. Начальникам территориальных управлений предложено взять под свое личное и непосредственное наблюдение и контроль вопросы пожарной охраны лесов. К 1 мая должна быть произведена проверка состояния работ по OWNETKE ACCOCCK ACCOSSIOTOBSTELLBING OPTERSвашнями и самозаготовителями и должны быть приняты все необходимые меры к устранению пожарной опасности. Лесозаготовители и лесопользователи в соответствии с договорами должны назначить лиц, ответственных за пожараную охрану на лесосеках, лесовозных дорогах, на площадях подсочки и прочих участках производства работ. На лесосеках, разрабатываемых в весение-летний период, и на лесовозных дорогах, по которым производится. летняя вывозка леса, они должны обеспечить специальную пожарную охрану, снабженную необходимым запасом противопожарного инвентаря. Кроме того, должно быть организовано конное и пешее патрулирование на лесных площадях, на которых производится подсочка, и на дорогах и тропинках, ведущих к ним, как особо опасным в пожарном отношения

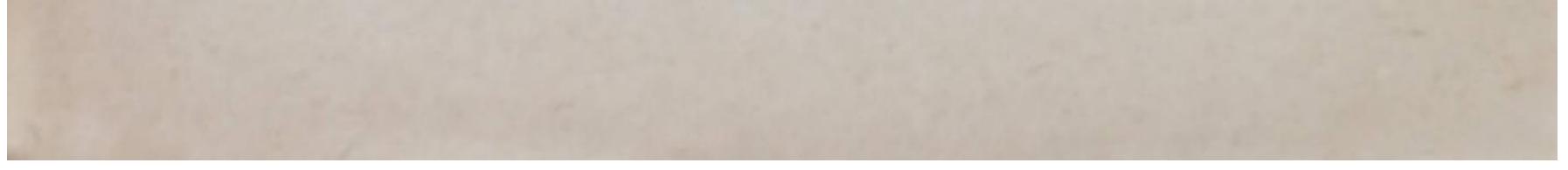
ная охрана с 15 апреля и до маступления осел-HHY JOMJER MOMET GATS ODMINETERS HE BUTGET REPRESE AND CARLYNDERS VOIDT: DO DOLLOTOPHE лесосечного фонда, наблюдению и руководству TOPH TOPOSE ACTIVE ACCORY ANTY VILLE ONDOT IS DAбот по борьбе с вредятеляния леся; однако на-SHARESHE ACCEON OXTABLE ME STR DECOTA MOMET быть проязведено только директором лескова. В объездах в обходах, особо опасных в по-WADBOW OTHORDERING, JECHYNO OND MAY BOATOR-MARTON OTDERATE OT EE MORWERK GORBERBOCTER на весь пожароопасный первод,

2 2

Ваклу того что полежие лесоустроительные работые 1937 г. законченыя с опозданием на полтора-дза месяца, приказом Главлесоохраны предложено обеспечить окончание всех кажеральных работ как 1937 г., так и предыдуших лет к 15 мая, а сдачу лесоустроятельных отчетов — к 1 июня 1938 г. Полевые работы 1938 г. лолжны быть начаты не позднее 15 мая и закончены не позднее 1 ноября.

Срок составления пятилетнего плана рубок. ухода и санитарных рубок в запретных полосах уставовлен 1 сентября 1998 г.

К 1 мая следует проверить в лескозах готовность и размещение по пожароопасным участкам противопожарного инвентаря и оборудования. Должны быть установлены постоянные дежурства из ответственных работников как в управлениях, так и в лесхозах, причем категорически воспрещен отрыв лесников и объезлчиков на работы вне их лесоохранных участков, кроме охраны леса. В своих участках лес-


Для производства водолесомелноративных обследований, ремонта осушительной сети и проведения санитарно-тидротехнических мероприятий в лескозах системы Московского, Калянинского, Смоленского, Харьковского и Киевского управлений образованы временные водолесомелноративные партии. Непосредственное руководство водолесомелкоративными работами возложено на старших лесничих территориальных управлений.

- № журя,	Стра- янца	Konos- Ka	Строка	Напечатано	Должно быть
23 .	54 62 68 21	ACB38	16 снизу 5 сверху	13,8% Вдажность почвы в % при глубине	срок в минутал —13,8% —13,8% Влажн сть поч вы в % при глу- бине взятия образцов в см

ОПЕЧАТКИ

Отв. редактор А. Д. Букштынов Технич. редактор А. С. Плахова Уполномоч. Гдавлита № Б-43410. Тираж 5000 экз. Изд. № 41. Формат 70×108 1/10-Объем 4 п. л. 6,3 уч. авт. л. Сд. в набор 22 IV 1938 г. Зн в печ. листе 62720. Подп. в печ. 9/VI 1938 г.

Типография Профиздата. Москва, Крутицкий вал. 18.

Scanned by TapScanner

3) ЗАЩИТЫ ЛЕСА I) ЛЕСОВОДСТВА 4) ПОДСОЧКИ 2) ЛЕСНЫХ КУЛЬТУР

РУКОВОДИТЕЛЕЙ ГРУППЫ:

НА ЗАМЕЩЕНИЕ ДОЛЖНОСТЕЙ

ИНСТИТУТ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЛЕСНОГО ХОЗЯЙСТВА (ВНИИЛХ) ГЛАВЛЕСОХРАНЫ при СНК СССР

ОБЪЯВЛЯЕТ

ВСЕСОЮЗИЫЙ

От соискателей требуется стаж научноисследовательской работы в избранной специальности, наличие ученой степени

ЛИЦА, ЖЕЛАЮЩИЕ ПРИНЯТЬ УЧАСТИЕ В КОНКУРСЕ, ПРИГЛАШАЮТСЯ ПОДАТЬ ЗАЯВ-ЛЕНИЯ В ВНИИЛХ С ПРИЛОЖЕНИЕМ: 1) АВТОБИОГРАФИИ, 2) КОПИИ ТРУДОВОГО СПИСКА, З) СПИСКА НАУЧНЫХ ТРУДОВ, 4) ПО ВОЗМОЖНОСТИ САМИХ НАУЧНЫХ РАБОТ, 5) ДОКУМЕНТОВ ОБ УЧЕНОМ ЗВА-НИИ И СТЕПЕНИ И 6) ОТЗЫВОВ С ПОСЛЕД-НЕГО МЕСТА РАБОТЫ ПО АДРЕСУ: гор. ПУШКИНО, МОСКОВСКОЙ ОБЛАСТИ (Ярославской жел. дор.), ПИСАРЕВСКАЯ, 15. ВСЕСОЮЗНЫЙ НАУЧ О ИССЛЕДОВАТЕЛЬ-СКИЙ ИНСТИТУТ ЛЕСНОГО ХОЗЯЙСТВА

СРОК КОНКУРСА 1 ИЮЛЯ 1938 ГОДА

ОПЛАТА ПО СОГЛАШЕНИЮ. МОЖЕТ БЫТЬ ПРЕДОСТАВЛЕНА КВАРТИРАВ Г. ПУШКИНО

Scanned by TapScanner

ГЛАВНОЕ УПРАВЛЕНИЕ ЛЕСООХРАНЫ и ЛЕСОНАСАЖДЕНИЙ при совнаркоме союза ССР

ОБЪЯВЛЯЕТ ПРИЕМ на 1938 год в высшие учебные заведения своей системы

 ВОРОНЕЖСКИЙ ЛЕСОКУЛЬТУРНЫЙ ИНСТИТУТ с отделениями лесохозяйственным и лесокультурным и
КИЕВСКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ
с отделением лесохозяйственным, которые готовят лесоводов-лесохозяйственным, которые готовят леников высшей квалификации

СРОК ОБУЧЕНИЯ 4 ГОДА 10 МЕСЯЦЕВ

ЛИЦА, СКОНЧИВШИЕ ИНСТИТУТЫ, направляются на работу в лесхозы, управ е ия лесоохраны и лесонасаждении, в и титуты и опытные учреждения в качестве лесинчих, специалистов директоров, научных и педагогических работников.

В ИНСТИТУТЫ ПРИНИМАЮТСЯ: граждане Союза ССР обоего пола в возрасте от 17 до 35 лет, имеющие законченное Среднее образование (10- етка, рабфак, техникум и окончивш е 9-летку до 1938 года) или получившие а тестат об окончании средней школы в порядке экстернат.

ОКОНЧИВШИЕ СРЕДНЮЮ ШКОЛУ (10летку) и имеющие по основным предметам отметки "отличн.", а по остельным (рисование, черчение, пение, музыка, физкультура) отметки не ниже "хорошо", принимаются без приеммых испытаний. Это право распростраияется и на кончивших средьюю школу в порядке экстерната.

ПРИЕМНЫЕ ИСПЫТАНИЯ ПРОИЗВО-ДЯТСЯ ПО СЛЕДУЮЩИМ ПРЕДМЕТАМ: 1) по русскому языку (письменное сочинение, грамматика и литература); 2) по политграмоте; 3) по математике (письменные и устные испытания; 4) по физике; 5) по химии; 6) по географии; 7) по одному из иностранных языков (английскому, немецному или французскомупо выбору поступающего). ПРИЕМНЫЕ ИСПЫТАНИЯ БУДУТ ПРО-ИЗВОДИТЬСЯ с 1 по 20 августа 1938 года, а зачисление в число студентов—с 21 по 25 августа. Лица, приним емые без поверочных испытаний, зачисляются в число студентов с 1 п 15 августа.

ЗАЯВЛЕНИЯ О ПРИЕМЕ следует подавать в окин из указанных институтов с 20 мюня по 1 августа 1938 года по адресу: В оронежский Лесокультурный институт, Воронеж, почта, СХИ. Киевский лесотехнический институт, г. Киев, Голосеево.


ЗАЯВЛЕНИЯ ВЫСЫЛАЮТСЯ НА ИМЯ директора института с приложением следующих документов: 1) подробной аттестации; 2) аттестата об окончании среднего учебного яаведения (в подличнике; 3) трех фотокарточек, с собственноручной подписью поступаюцего на каждой из них, заверенных госучреждением; 4) справки об отношении к военной обязанности (для военнообязанных).

Паспорт пред'является лично при явке.

Всех приезжающих институты обеспечивают на период испытаний бесплатным общежитием.

При институтах орг низованы консультационные бюро, которые отвечают на з просы по уче ным программам и дают разъяснения по отдельным вопросам приема.

СТУДЕНТЫ ИНСТИТУТОВ ОБЕСПЕЧИВАЮТСЯ ОБЩЕЖИТИЕМ СТИПЕНДИИ СТУДЕНТАМ ВЫДАЮТСЯ НА ОБЩИХ ОСНОВАНИЯХ

Scanned by TapScanner

Цена 1 р. 25 к.

ВНИМАНИЮ подписчиков

ЖУРНАЛА

"В ЗАЩИТУ ЛЕСА"

С 1 июля текущего года журнал будет выходить под наименованием "ЛЕСНОЕ ХО-ЗЯЙСТВО" в объеме 6 печатных листов, тираж 7500 экз. Подписная плата на второе полугодие (июль — декабрь) 10 р. 50 к. Годовые подписчики журнала "В защиту леса" доплачивают 3 руб. Доплата должна быть произведена не позднее июля тек. года переводом в редакцию журнала "В защиту леса" (Москва, 12, улица Куйбышева д., № 1, угол Красной площади).

редакции или же направлять переводами по почте.

Scanned by TapScanner