УДК 536.7+537.312.62+621.348.8

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЫСОКОТЕМПЕРАТУРНЫХ 4-КОМПОНЕНТНЫХ ОКСИЛНЫХ СВЕРХПРОВОЛНИКОВ

А.И.Волков, О.Н.Комшилова, А.Г.Наливайко, И.А.Ратьковский, И.М.Жарский, В.Н.Яглов $^{\aleph}$, А.В.Степаненко $^{\aleph \aleph}$ БТИ, БПИ $^{\aleph}$, АН БССР $^{\aleph \aleph}$, Минск

Изучение многокомпонентных оксидных сверхпроводящих систем выполнено нами с использованием комплекса физико-химических методов. Тензиметрическим методом определены термодинамические характеристики процесса установления равновесного давления кислорода над оксидными керамиками в зависимости от температуры.

Детальное тензометрическое исследование выполнено нами для керамики ${}^{YBaSrCu}_{3}O_{x}(x=7-\delta)$. В зависимости от давления кислорода, при котором осуществлялся обжиг керамики, изменялось и содержание кислорода в ней (dP/dx=0,7-I МПа/моль %). В синтезированной нами керамике максимально достигнутое содержание кислорода отвечало составу с x=6,86.

Анализ кривых зависимости P = f(T) позволил установить значения энтальпии и энтропии процесса (I)

При дальнейшем нагревании образцов удаление кислорода определенным образом меняет состав образующейся тетрагональной фазы без изменения структуры конденсированной части системы:

$$[YBaSrCu3O6,7] = [YBaSrCu3Oy] + \frac{6.7-y}{2} (O2)$$
 (2)

С использованием полученных экспериментальных данных определены ΔS_{T}^{O} и ΔH_{T}^{O} процесса (2) в зависимости от состава (у). Зависимость $\Delta H_{T}^{O} = f(x,y)$ имеет два характерных излома вблизи составов x = 6,7 и y = 6,6. Первый излом (x = 6,7) отвечает фазовому переходу, второй (y = 6,6) связан с утратой керамикой сверхпроводящих свойств.

Следует особо отметить, что состав YBaSrCu₃O_{6.6}, отвечающий второму излому зависимости $\Delta H_T^0 = f(x,y)$, близок к составу с y=6,5, в котором все атомы меди обладают степенью окисления +2. Формально это соответствует переходу $\mathrm{Cu}_2^{+3}\mathrm{O}_3$ - $\mathrm{Cu}_2^{+2}\mathrm{O}_6$ -Как показали термодинамические расчеты, выполненные на основе экспериментальных данных для синтезированного $\mathrm{Cu}_2\mathrm{O}_3$, данный переход становится экзоэргичен при температурах выше 720° С. Это необходимо учитывать и при синтезе сверхпроводящих керамик. На зависимости $\Delta H_T^0 = f(x,y)$ вышеуказанному второму излому при y=6,6 отвечает температура $695-720^{\circ}$ С.

Несомненно, это служит еще одним доказательством, что свойства высокотемпературных сверхпроводящих керамик связаны с разновалентным состоянием меди, в частности, $\mathrm{Cu}^{+3}/\mathrm{Cu}^{+2}$. Поэтому дальнейший прогресс в поиске новых высокотемпературных сверхпроводников, очевидно, представляется возможным связать с необходимостью стабилизации части атомов меди, находящихся в структуре сверхпроводника, в частности, $\begin{bmatrix} \mathrm{Cu}(1)\mathrm{o}_{1-8}\mathrm{o}^1 \end{bmatrix}$, в высшей (+3) степени окисления для получения материалов с более высокой T_{C} .

это подтверждается изучением керамики $YBa_2(Cu_{0,95})^3O_{0,05})_3O_{7-}$ 8 , содержащей добавки оксидов различных металлов, например, 3 d -элементов. Небольшие (до 0, I мольной доли) добавки оксидов металлов в высшей степени окисления, как Sc_2O_3 , $T1O_2$, V_2O_5 и т.д., не могут существенно изменить ни локальной структуры вокруг Cu атомов в линейной цепи

 $_{
m O-Cu-O}$, ни высшей степени окисления отдельных атомов меди, что обеспечивает практическое постоянство максимального значения $\rm T_c$. Присутствие же оксидов металлов в низшей степени окисления, например $\rm MnO$, $\rm Cr_{2}O_{3}$, способствует восстановлению данной части атомов меди и $\rm T_c$ понижается на десятки градусов.

Полное замещение атомов иттрия (LnBa2Cu3O7-8) или частичное (Y1-x ln x Ba2Cu3O7-8) на редкоземельные элементы в большинстве случаев существенно не изменяет T_c , хотя в ряде случаев (Ln=Eu, Ho, Lu) отмечалось более значительное ($\Delta T > 3$ K) изменение ширины перехода в сверхпроводящее состояние. Для данных изоструктурных соединений T_c сохраняет высокие значения (87-95 K). В отличие от замещения меди на 2-х валентные 3 d -элементы для данного семейства лантаноидной керамики мы не обнаружили внутренней периодичности в изменении значений T_c , замечено лишь уменьшение T_c для структур с более малыми параметрами решетки.

Естественно, что значения T_c сильно чувствительны ($I,4-2,2^{\circ}$ С/моль%Ln) к более значительным изменениям структурных данных при замещении атомов бария на самарий или неодим, как это имело место для керамики сос-

тава Ln_{1+x}Ba_{2-x}Cu₃O₇₋₈

Изучение системы $L_D(Ba_{1-x}Me_x)_2Cu_3O_{7-8}$ показало, что, как и следовало ожидать, замещение бария на стронций значительно менее чувствительно к T_c по сравнению с замещением бария на атомы кальция. Наблюдалось практически линейная зависимость уменьшения значения T_c от содержания замещающего барий стронция $(0,18^OC/моль\% \ Sr)$.

Поиск других оксидных сверхпроводящих материалов с высоким значением T_c путем частичного замещения атомов лантаноидов (Eu , Ho) барием, на примере состава Ln_{1-x} $\text{Ba}_x\text{CuO}_{4-8}$, был менее успешен, чем для $Y_{1-x}\text{Ba}_x\text{CuO}_{4-8}$.

Нами отмечены переходы в сверхпроводящее состояние некоторых составов при температурах выше 200 К, которые, однако, не являлись воспроиз-

водимыми.

В связи с обусловленными представлениями в данном сообщении обсуждаются результаты исследования новых оксидных систем $B1-Sr-C_8-C_U-O$ и $T1-Ba-C_8-C_U-O$ с высокими значениями температуры перехода в сверхпроводящее состояние.