Литература

1. Павлушкин Н.М. Основы технологии ситаллов. М., 1970. 2. Бережной А.И. Ситаллы и фотоситаллы, М., 1966, 3. Жунина Л.А., Кузьменков М.И., Яглов В.Н. Пироксеновые ситаллы, Минск, 1974. 4. Павлушкин Н.М. и др. - В сб. Шлакоситаллы. М., 1970, 41-43. 5. Кручинин Ю.Д., Кручинина Л.П., Устьянцева Г.А. - Изв. АН СССР, Сер. "Неорганические материалы", 1975, т. III, 911-915, 6. Баранцева С.Е. Костюнин Ю.М., Дащинский Л.Г. - В сб.: Отекло, ситаллы и силикатные материалы, вып. 3. Минск. 1974, 135-140.7.Костюнин Ю.М. и др. - В сб.: Строение и свойства стеклокристаллических материалов на основе черных пород и Чимкент, 1974, 8. Кручинин Ю.Д., Кузина Т.В., Гурулиева Г.Ю. О последовательности кристаллизации железосодержашего стекла пироксенового состава. - "Изв. АН Каз. 1974, 81-84. 9. Кручинин Ю.Д., Кузина Т.В., ва Р.Г. - В сб.: Строение и свойства стеклокристаллических материалов на основе горных пород и шлаков. Чимкент. 10. Ермоленко Н.Н. - В сб.: Стекло, ситаллы и силикатные материалы, вып. 2. Минск, 1973, 5-12. 11. Шамкалович В.И., Ермоленко Н.Н. - В сб.: Стекло, ситаллы и силикатные материалы, вып. 3. Минск, 1974, 13-24. 12. Кручинин Ю.Д. Белоусов Ю.А. - В сб.: Строение и свойства стеклокристаллических материалов на основе горных пород и шлаков. кент, 1974, 76-80. 13. Дир У.А., Хауи Р.А., Зусман Д. Породообразующие материалы. М., 1966. 14. Поваренных А.С. Кристаллическая классификация минеральных видов. Киев. 1966. 234-236. 15. Добрецов Н.А. и др. Породообразующие пироксены. М., 1971, 48-54.

И.Н. Одельская

ЗАВИСИМОСТЬ ФАЗОВОГО СОСТАВА, СТРУКТУРЫ И СВОЙСТВ ЦИНКСОДЕРЖАЩЕГО СТЕКЛА ОТ ТЕМПЕРАТУРЫ ТЕРМООБРАБОТКИ *

Изучение взаимосвязи изменения структуры и свойств стекол с параметрами тепловой обработки имеет важнейшее значение для установления общих закономерностей механизма кри-

^{*}Работа выполнена под руководством Л.А. Жуниной.

сталлизации и получения материала с заданными свойствами. По изменению фазового состава и свойств в процессе кристал — лизации стекол можно судить о полноте его протекания и степени завершенности формирования стеклокристаллической структуры [1, 2].

На основе экспериментальных исследований, проведенных нами ранее [3], разработан оптимальный состав цинксодержащего стекла в системе SiO_2 - TiO_2 - Al_2O_3 -ZnO-MgO- Na_2O , пригодного для получения ситалла с повышенными термохимическими свойствами.

Настоящая работа посвящена изучению структурных и фазовых превращений стекла 3-72 по мере его термообработки, а также исследованию свойств продуктов его кристаллизации с целью разработки в дальнейшем оптимального режима ситаллизации.

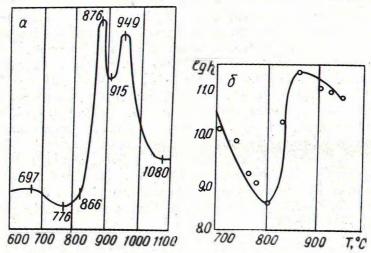


Рис. 1. Термограмма (a) и кривая низкотемпературной вязкости (б) цинкосодержащего стекла в процессе его термообработки.

Образцы опытного стекла проходили термическую обработку в интервале температур 750-1050°С с шагом варьирования 50°С и выдерживались на этих температурных экспозициях в течение 2 ч. Исследование проводили комплексным методом, включающим дифференциально-термический и рентгенофазовый анализы, а также электронную микроскопию в сочетании с определением низкотемпературной вязкости, плотности, температуры начала размягчения и химической устойчивости продуктов кристаллизации. Химическая устойчивость образцов определялась порошко-

вым методом (размер зерен $0.5 \div 0.25$ мм) при кипячении стекла и продуктов его кристаллизации в кислоте и щелочи в течение 1 ч.

Для исследования кристаллизационной способности стекла нами осуществлен дифференциально-термический анализ (запись термограммы проведена в интервале 600-1100°С) в сочетании с определением низкотемпературной вязкости в интервале 700 - 900°С.

На термограмме (рис. 1,a) в интервале 700-815 С наблюдается эндотермический эффект с минимумом при 770 С, соответствующий температуре размятчения стекла и изменению термопластического состояния системы. Резкий подъем кривой ДТА и образующиеся максимумы экзотермических эффектов при температурах 880 и 950 С свидетельствуют об активной кристаллизации стекла с выделением двух кристаллических фаз [4]. Завершение кристаллизационного процесса можно фиксировать по данным ДТА при 1080 С (см. рис. 1,a).

При совместном рассмотрении и анализе результатов ДТА и определении низкотемпературной вязкости отмечено, что данные этих определений находятся в полной согласованности (рис. 1, а, б). Температура начала экстремального нарастания вязкости (см. 800°C, рис. 1,6) и температура начала экзотермического эффекта (815°C, рис. 1,а) почти совпадают, что указывает на начало активного процесса кристаллизации стекла, сопровождающегося резким упрочнением кристаллического каркаса. Минимум 1g η исследуемого стекла составляет 8,5, что свидетельствует о деформационной устойчивости его в процессе кристаллизации [5, 6].

Рентгенофазовый анализ продуктов кристаллизации цинксо-держащего стекла (рис. 2) фиксирует появление первой кристаллической фазы при температуре 800 С с характеристическими максимумами (3,17; 2,86; 2,46 Å), принадлежащими цинксодержащему энстатиту (Mg, Zn) SiO3 [7,8]. Это и обусловливает нарастание вязкости при 800 С (рис. 1,6). При температуре термообработки 850–1050 С наряду с энстатитом происходит формирование второй кристаллической фазы — ганита $ZnO \cdot A1_2O_3$ (1,43; 2,44; 2,87 Å). При этом по мере увеличения температуры термообработки возрастает интенсивность его основных пиков (рис. 2).

Почти одновременное формирование цинксодержащего энстатита и ганита, по-видимому, вносит свой суммарный вклад в процесс кристаллизации стекла и усиливает упрочняющее дейст-

вие кристаллического каркаса. Это и обусловливает резкое увеличение значения 490, выражающееся в экстремальном резком подъеме кривой низкотемпературной вязкости (рис. 1,6) и восходящей ветви кривой ДТА в интервале температур $800-900^{\circ}$ С (рис. 1.a).

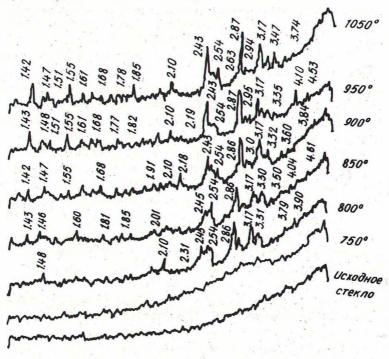


Рис. 2. Рентгенограмма продуктов кристаллизации цинкосодержащего стекла полученного при различных температурах его термообработки.

Зависимость некоторых свойств стекла и продуктов его кристаллизации, в частности плотности см. температуры размягчения и химической устойчивости к 1нНС1 и 1н NaOH приведена на рис. 3. Из рисунка видно, что в интервале температур термообработки 750-1000 С происходит значительное изменение всех вышеуказанных свойств. Объяснение этому находим при рассмотрении электронно-микроскопических снимков, полученных при этих же температурных экспозициях (рис. 4).

До 800°С наблюдается активная ликвация стекла, сопровождающаяся увеличением плотности, температуры начала размягчения и резким повышением химической устойчивости (рис.3,4). По-видимому, в этом температурном интервале происходит концентрация ликвационных микрообластей, по составу близких к химически устойчивым энстатиту и ганиту [4]. При дальнейшем повышении температуры термообработки (800-900°С) на электронных снимках видно образование кристаплических фаз; наиболее однородная микрокристаллическая структура наблюдается при 950-1000°С (см. рис. 4), что подтверждается и данными

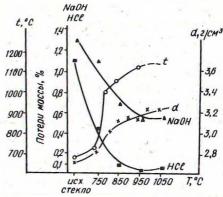


Рис. 3. Изменение свойств продуктов кристаллизации шинкосодержащего стекла в процессе его термообработки,

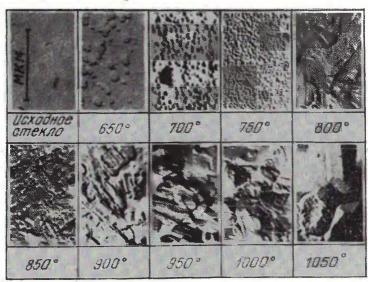


Рис. 4. Электронно-микрофотографии исследуемого стекла в зависимости от температуры его термообработки.

РФА (см. рис. 2). Этой температурной экспозиции соответствует максимум показателей свойств (см. рис. 3), свидетельствующий о завершенности процесса формирования кристаллической структуры.

При повышении температуры термообработки до 1050°С на электронно-микроскопических снимках (см. рис. 4) заметно увеличение размеров кристаллов и изменение их габитуса. Возможно также изменение состава стекловидной фазы, что вызывает некоторое снижение значений ведущих свойств, в частности химической устойчивости (см. рис. 3).

Таким образом, на основании анализа и теоретической интерпретации экспериментальных данных изучения структурных и фазовых превращений в комплексе с исследованием зависимости основных свойств от температуры термообработки установлено, что при получении стеклокристаллического материала из исследуемого цинксодержащего стекла, характеризующегося повышенными химическими свойствами, целесообразно рекомендовать двухступенчатый режим кристаллизации.

Литература

1. Павлушкин Н.М. Основы технологии ситаллов. М., 1970. 2. Макмиллан П.У. Стеклокерамика. М., 1967. 3. Одельская И.Н., Врубель А.А. Технологические и кристаллизационные свойства стекол, полученных на основе системы SiO-MgO- ZnO. - В сб.: Стекло, ситаллы и силикатные материалы, вып. 3. Минск, 1973, 95-99. 4. Мазурин О.В. Исследование физических и химических свойств ликвирующих стекол метод изучения их структуры. - В сб.: Ликвационные явления в стеклах. М., 1969, 31. 5. Павлушкин Н.М., ский В.С., Саркисов П.Ф. Вискозиметрические исследования процессов ситаллизации шлакоситаллов. - В сб.: Шлакоситаллы. М., 1970, с. 54. 6. Бондарев К.Т. и др. О возможностях вискозиметрического изучения процессов кристаллизации шлакоситаллов. - В сб.: Шлакоситаллы. М., 1970, 74-78. 7. Поваренных А.С. О рационализации и унификации кристаллохимических формул минералов. - В сб.: Химический состав и внутреннее строение минералов. М., 1964. с. 3. 8. Энергии разрыва химических связей. - Потенциалы ионизации и сродство K электрону. Справочник. М., 1962.