ВЛИЯНИЕ ПЯТИОКИСИ НИОБИЯ НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ВАНАДИЙСОДЕРЖАЩИХ ФОСФАТНЫХ СТЕКОЛ

Ванадийсодержащие фосфатные стекла относятся к группе материалов, обладающих высокой электронной проводимостью [1,2]. Однако наряду с хорошими полупроводниковыми свойствами ванадийсодержащие стекла весьма склонны к кристаллизации, что затрудняет их синтез, и характеризуются сравнительно низкими параметрами физико-химических свойств, в частности низкими термостойкостью и химической устойчивостью. Последняя настолько мала, что некоторые ванадатные стекла полностью разрушаются в холодной воде [3]. В связи с этим области практического применения ванадатных стекол как электронных полупроводников, способных работать в различных агрессивных и влажной средах, ограничены.

Данное исследование предпринято с целью изучения влияния пятиокиси ниобия на физико-химические свойства ванадийсодержащих стекол в системе $P_2O_5 - Nb_2O_5 - V_2O_5 - TiO_2$.

Как известно из ряда работ [4-7], ион ниобия, следуя структурному мотиву $[PO_4]$, может встраиваться в структурную сетку фосфатного стекла и, благодаря высокому заряду и относительно малому ионному радиусу, способствовать созданию плотной структуры с прочными связями, улучшая физико-химические свойства фосфатных стекол.

Объектом для исследования послужила серия стекол с постоянным соотношением окислов $TiO_2:V_2O_5:P_2O_5$, равным 2:1:1, и возрастающей концентрацией Nb_2O_5 от 0 до 20 мол.%. На пяти составах стекол этой серии с содержанием Nb_2O_5 0, 5, 10, 15, 20 мол.% изучались температура начала размятчения, микротвердость, плотность, электропроводность и химическая устойчивость. Результаты эксперимента графически показаны на рис. 1.

С увеличением процентного содержания ${\rm Nb}_2{\rm O}_5$ в составах исследуемых стекол прослеживается тенденция к росту температуры начала размятчения, плотности, микротвердости и сни жению электропроводности. Характер зависимости физико-химических свойств опытных стекол от содержания в них ${\rm Nb}_2{\rm O}_5$ коренным образом отличается от характера тех же зависимостей для стекол системы ${\rm P}_2{\rm O}_5$ — ${\rm Nb}_2{\rm O}_5$ — ${\rm TiO}_2$ — ${\rm Fe}_2{\rm O}_3$ 8,

где на кривых "состав-свойство" имеется явный перегиб, обусловленный, по нашему мнению, координационными перестройками ионов ниобия в структуре стекла. Поскольку в исследуемых стеклах такого перегиба не наблюдается, можно предположить, что координационное состояние ионов ниобия остается неизменным при всех рассметриваемых концентрациях Nb₂O₅ в стеклах.

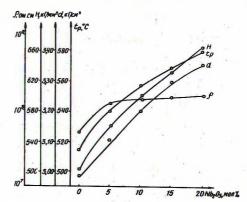


Рис. 1. Зависимость физико-химических свойств стекол от процентного содержания Nb₂O₅: Н-микротвердость; д-плотность; т-температура начала размячения; р- электрическое сопротивление.

Рост температуры начала размягчения, плотности и микротвердости обусловлен самой химической природой вводимого окисла Nb_2O_5 . В связи с тем что ион ниобия имеет относительно малый ионный радиус и высокий заряд, он обеспечивает плотную упаковку в структуре стекла и высокую прочность связей, что и способствует повышению указанных свойств стекол по мере увеличения в их составах содержания Nb_2O_5 .

Исследование химической устойчивости опытных стекол по-казало, что с увеличением содержания в них $\mathrm{Nb}_2\mathrm{O}_5$ кислотостойкость возрастает. Потери в весе снижаются с 3,3 до 0,3% (почти в 10 раз), но шелочеустойчивость мала и с увеличением $\mathrm{Nb}_2\mathrm{O}_5$ снижается (потери в весе составляют от 20 до 50%). Низкая щелочеустойчивость опытных стекол объясняется кислотным характером окислов, входящих в состав стекла. Все исследуемые стекла в воде практически нерастворимы.

Особый интерес вызывает рассмотрение электрических свойств опытных стекол, так как в них одновременно присутствуют три окисла элементов переменной валентности: V_2O_5 , Nb_2O_5 , TiO_2 , каждый из которых вносит свою составляющую в электрическую проводимость стекла.

Введение первых добавок Nb $_2$ O $_5$ в количестве $_7$ 5 мол. % вызывает повышение электросопротивления от 7,2·10 $_7$ до 1,3× $_8$ 10 $_8$ 0 $_8$ 0 $_8$ 0 см (рис. 1). Дальнейшее увеличение Nb $_2$ O $_5$ от 5 до 25 мол.% существенного влияния на электросопротивление не оказывает. Кривая зависимости ρ = f (C) (С-концентрация Nb $_2$ O $_5$) на этом участке описывается уравнением прямой, причем электросопротивление растет незначительно: от 1,6·10 $_8$ 0 (для состава с 10 мол.% Nb $_2$ O $_5$) до 2,0·10 $_8$ 0 Ом·см (для состава с 25 мол.% Nb $_2$ O $_5$).

Сопоставление данных по электропроводности стекол системы $P_2O_5 - Nb_2O_5 - V_2O_5 - TiO_2$ с данными, полученными для стекол системы $P_2O_5 - Nb_2O_5 - TiO_2 - Fe_2O_3[8,9]$, показало, что зависимости электросопротивления от содержания Nb_2O_5 для стекол рассматриваемых систем резко отличаются друг от друга и имеют совершенно противоположный ход кривых. Если для стекол системы $P_2O_5 - Nb_2O_5 - TiO_2 - Fe_2O_3$ с ростом концентрации пятиокиси ниобия электросопротивление снижается и при 15-17 мол.% Nb_2O_5 на кривой зависимости $\rho = f$ (C) имеет место перегиб 100, то для стекол системы 100, 10

Согласно нашему мнению, роль пятиокиси ниобия в обеспечении полупроводниковых свойств стекол системы P_2O_5 – Nb_2O_5 – TiO_2 – Fe_2O_3 сводится лишь к косвенному влиянию Nb_2O_5 , т.е. ионы ниобия непосредственного участия в электропереносе не принимают. Повышение содержания Nb_2O_5 приводит к изменению структурного состояния ионов титана и железа и установлению определенного донорно—акцепторного со-отношения этих ионов, обеспечивающего повышение электропроводности стекол.

В работах Л. Муравского [10, 11] показано, что в бинарных фосфатных железо— и ванадийсодержащих стеклах донорно—акцепторное отношение не должно превышать для $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+} \approx 0.33\%$ и для $\mathrm{V}^{4+}/\mathrm{V}^{5+} \approx 0.5\%$. С ростом этого отношения электропроводность стекол резко снижается.

Вероятно, в стеклах системы P₂O₅ - Nb₂O₅ - V₂O₅ - TiO₂ с введением пятиокиси ниобия нарушается то предельное ссотношение между донорными и акцепторными ионами, от которого зависит электропроводность опытных стекол. С ростом содержания Nb₂O₅ увеличивается восстановительный потенциал расплава, и это приводит к восстановлению ионов титана и ванадия до состояния низшей валентности. Донорно-акцепторное равновесие смещается в сторону образования ионов доноров; число ионов-акцепторов при этом снижается, и процесс миграции электронов проводимости ослабевает, что вызывает понижение электропроводности.

Температурная зависимость удельного объемного электросопротивления для всей серии стекол прямолинейная и носит строго экспоненциальный характер, т.е. подчиняется уравнению

Раша-Хенриксена $\rho = Ae^{\frac{B}{T}}$ (рис. 2).

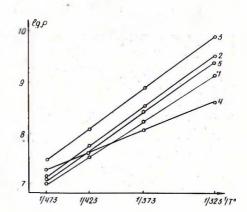


Рис. 2. Зависимость $\lg \mathcal{P}$ от температуры: стекло, не содержащее $\mathrm{Nb}_2\mathrm{O}_5$ (1) и содержащее 5 (2), 10 (3), 15 (4), и 20 мол. % $\mathrm{Nb}_2\mathrm{O}_5$ (5).

Таким образом, положительное влияние пятиокиси ниобия на физико-химические свойства исследуемых стекол обусловлено высоким зарядом иона ниобия и относительно малым ионным радиусом, благодаря чему создаются высокая прочность связей и плотная упаковка в структуре стекла, обеспечивающие повышение его свойств. Координационное состояние ионов ниобия остается неизменным для всех составов опытных стекол.

Пятиокись ниобия повышает кислотостойкость стекол и устойчивость их к воде и значительно снижает щелочеустойчивость.

Электропроводность опытных стекол зависит от донорно-акцепторного соотношения ионов переходных металлов, на величину которого оказывает влияние процентное содержание Nb₂O₅

Литература

1. Гречаник Л.А., Карпеченко В.Г., Петровых Н.В.-Научно-технический сборник НИИЭС, вып. 14. М., 1959, 19-38. 2. Петровых Н.В. Научно-технический сборник НИИЭС, вып.10. М., 1958,14. З. Китайгородский И.И., Карпеченко В.Г. — "Стекло и керамика", 1958, № 6, 8-10. 4.Янишевский В.М.-В сб.: Стеклообразное состояние. Минск, 1968, 76-82. 5. Н і rayama Ch., Berg D.-J. Amer. Ceram. Soc. 46,2, 1963, 85-88. 6. Матвеев М.А., Ржевуская Т.Л., Рачковская Г.Е. - В сб.: Стеклообразные системы и новые стекла на их основе. ВНИИНТИ и ЭПСМ, М., 1971, 147-150. 7. Бобкова Н.М., Рачковская Г.Е. - В сб.: Отекло, ситаллы силикатные материалы, вып. 2. Минск, 1974, 24-28. 8. Рачковская Г.Е., Бобкова Н.М. - В сб.: Стекло, ситаллы силикатные материалы, вып. 5. Минск, 1976, 9-14. 9 Рачковская Г.Е., Бобкова Н.М. - В сб.: Производство и исследование стекла и силикатных материалов, вып. 4. Ярославль, 1974, 214-220. 10. Murauski L. Fizyka XV, 229, 1975, 47-57.; 11. Murauski L., Gzowski O. - Fizyka, N200, Gdansk, 1973, 81 - 92.

А.К. Синевич

К ВОПРОСУ О ХИМИЧЕСКОМ СОСТАВЕ СТЕКОЛ, ОКРАШЕННЫХ ОКИСЛАМИ РЗЭ

В настоящее время в составы сортовых цветных стекол, окрашенных окислами редкоземельных элементов, обычно вводят 2-4% $\rm K_2^{\rm O}$, объясняя это необходимостью улучшения выработочных и механических свойств. Между тем имеется ряд теоретических предпосылок [1, 5, 7, 8] и выводов лабораторных опытных варок, противоречащих этому распространенному мнению.

В данной работе сделана попытка выяснить, насколько технологически и экономически оправдан ввод в стекла с РЗЭ ${\rm K_2O}$. Изучается влияние ${\rm K_2O}$ на свойства стекла, а также возможность его замены на ${\rm Na_2O}$.