доки, научи, техн. конф. профессорско-преподават, состава РПИ. Рига, 1970, с. 31-32. 8. Müller K.P. Struktur und Eigenschaften von Gläsern und glasbilden den Schmelzen-Glastechn. Ber., 1969, 42, N 3, p. 83-89. 9. Moenke M. Mineralspektren. Deutsche Acad-Wissenschaft. Academic-Verlag, 1962. 10. Roger B. Structure and properties of sibrer phosphate glasses Infrared and visible spectra. – J.Non – Cryst. Solids, 7, 3, 1972, p. 221-235.

УДК 666.01

Л.М. Силич, Л.Н.Викарук

ИССЛЕДОВАНИЕ СТРУКТУРЫ СТЕКОЛ СИСТЕМЫ $\mathrm{SrO-BaO-Al}_2\mathrm{O}_3\mathrm{-TiO}_2\mathrm{-SiO}_2$ МЕТОДОМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ *

Исучение структуры стекол системы SrO-BaO-Al₂O₃ - TlO₂ - SiO₂ с закономерно изменяющимся составом при постоянном увеличении содержания одного элемента за счет другого проводилось с помощью прибора ИКС-14A.

На рис. 1 представлены ИК-спектры поглощения опытных стокол сочения с 12,5 мол.% ${\rm TiO}_2$ и 5 мол.% ${\rm BaO}$ с меняю - щимся от 5 до 25 мол.% количеством ${\rm Al}_2{\rm O}_3$ за счет ${\rm RO}$. Как видно из рис. 1, ИК-спектр стекол, содержащих небольшое количество ${\rm Al}_2{\rm O}_3$ (5-10 мол.%), состоит из основной полосы поглощения в области 900 - 1100 см $^{-1}$ с наиболее выразительными максимумами при 1010 и 1040 см $^{-1}$ и полосы в области 600 - 800 см $^{-1}$ с неглубокими по интенсивности максимумами при 660, 730, 780 и 800 см $^{-1}$. Положение основной полосы поглощения в большой мере определяется структурой аниопного каркаса, степенью полимеризации тетраэдров ${\rm SiO}_4$. Полосы при 1040 и 1010 см $^{-1}$ характеризуют присутствие отруктурных группировок со связями ${\rm Si-O-Si}$. Разная степень полимеризации тетраэдров ${\rm SiO}_4$ обуславливает наличие группировок, близких к дисиликатам, с основным структурным комплексом типа (${\rm Si}_2{\rm O}_5^{-1}$) ${\rm n}$ [1].

Работа выполнена под руководством докт. техн наук, про-

В области 900 – 1100 см $^{-1}$ наряду с основными максимумами присутствуют полосы 900, 920, 950, 970 и 1090 см $^{-1}$ с плечом в высокочастотной области 1135 см $^{-1}$. Таким образом, в стеклах с небольшим количеством Al_2O_3 (5–10 мол.%) в присутствии 42,5–47,5 мол.% SiO_2 наряду с основным типом группировок присутствуют и группировки типа орто- (900 см $^{-1}$) и метасиликатов (950 см $^{-1}$) стронция и бария, т.е. в стекле имеются группы с относительно невысокой степенью полимеризации.

Полосы в области 700-800 см⁻¹, очевидно, связаны с валентными колебаниями О-Si -О и обнаруживаются у стеклообразного кремнезема. В области же 780-800 см⁻¹ располага ется одна из характеристичных полос кварца – дублет 777 и

 797 cm^{-1} [1].

По данным В.В.Ермолаевой [2], указанные полосы связаны с наличием шестичленных колец из тетраэдров SiO₄. Наряду с полосами при 1100 и 1135 см⁻¹ это свидетельствует о присутствии в стекле высококремнеземистых комплексов каркасного типа. Полоса 660 см⁻¹ может быть связана с наличием в стекле титана и колебанием группировок, содержащих Ti - O. Идентификация этой полосы осложняется тем, что положение ее в спектре определяется как координационным числом последнето, так и составом, и симметрией кристаллической решетки, т.е. дополнительным эффектом, обуславливающим дисперсию собственных частот.

При увеличении в стеклах количества ${\rm Al}_2{\rm O}_3$ за счет RO их ИК-спектр изменяется (см. рис. 1). Характер изменения неодинаков у стекол с различным количеством ${\rm SiO}_2$. Так, в стеклах с 42,5 мол.% ${\rm SiO}_2$ по мере замены происходит повышение интенсивности основной полосы поглощения при 900 – 1100 см $^{-1}$, усиливается полоса 1090 см $^{-1}$, едва намеченная в стекле с 10% ${\rm Al}_2{\rm O}_3$. Интенсивность полосы при 800 см $^{-1}$ также усиливается.

В стеклах с 47,5 мол.% $\rm SiO_2$ (рис. 1,6) наблюдается появление дополнительной полосы при 1280 см $^{-1}$, отвечающей наличию практически не нарушенных связей $\rm Si-O-Si$. Кроме того, начиная с 10% $\rm Al_2O_3$, происходит углубление общего контура области 700-740 см $^{-1}$. В качестве основных выделяются полосы поглощения при 720 и 740 см $^{-1}$. Появляется и растет по мере повышения замены RO на $\rm Al_2O_3$ полоса при 795 см $^{-1}$.

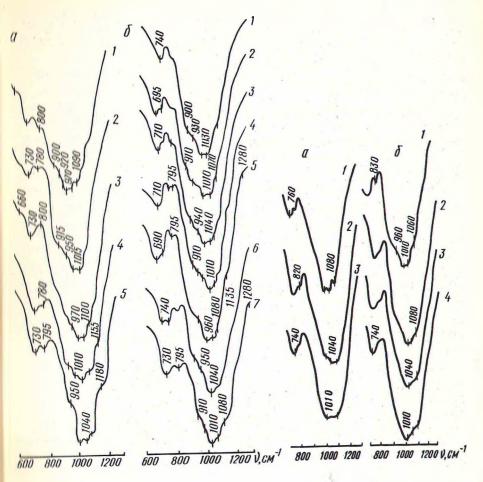


Рис. 1. ИК-спектры поглощения стекол системы $SrO-BaO-Al_2O_3-TiO_2-SiO_2$ с постояным содержанием SiO_2 : 42,5 (a) и 47,5 (б); а -10(1), 15(2), 20(3), 22,5(4) и 25 мол.% Al_2O_2 (5), 35(1), 30(2), 25(3), 22,5(4) и 20 мол.% RO(5); 6-5(1), 10(2), 15(3), 17,5(4), 20(5), 22,5(6) и 25 мол.% Al_2O_3 (7), 35(1), 30(2), 25(3), 22,5(4), 20(5), 17,5(6) и 15 мол.% RO(7).

Рис. 2. ИК-спектры поглощения стекол системы $SrO-BaO-Al_2O_3-TiO_2-SiO_2$ с постоянным содержанием $SiO_2:42,5$ (а) и 47,5 (б); 5 (1), 10 (2) и 15 мол.% BaO(3), 15(1), 10(2), 5(3) и 2,5 мол.% SrO(4).

Полоса 740-750 см⁻¹, возможно, является проявлением второго тона, характерного для метасиликатов. Валентные колебания метасиликатных группировок прослеживаются во всех приведенных на рис. 1 спектрах при 930-960 см⁻¹[1]. Поглощение при 740 см⁻¹ может быть вызвано и присутствием в стеклах тетраэдров AlO₄.

По мере замены ⁴ RO на Al ₂O ₃ в обеих сериях стекол происходит дифференциация структурных комплексов, приводящая к большей упорядоченности структуры в целом. Наряду с повышением количества упорядоченных группировок повышается неоднородность стекла за счет более выраженной дифференциации структурных групп. Это происходит вследствие уменьшения количества комплексов со структурой, промежуточной между высоковалентными и группировками с повышенной долей ионных связей,

Даже незначительное изменение химического состава стекла, как, например, повышение содержания SiO_2 на 5 мол.%, приводит к перемене характера структурных превращений. В этом случае с увеличением Al_2O_3 за счет RO дифференциация структурных комплексов происходит более резко. Наряду с группи ровками с преобладанием ионных связей в стеклах с $22,5 \div 25$ мол.% Al_2O_3 присутствуют и группировки с преимущественно ковалентным характером связей, высококремнеземистые и кварцеподобные участки (1080, 1280 см $^{-1}$).

Следовательно, при замене RO на ${\rm Al}_2{\rm O}_3$ в стеклах повышается количество упорядоченных структурных элементов наряду с увеличением общей неоднородности структуры. Такие стекла должны обладать более высокой склонностью к кристаллизации. Эти показатели хорошо согласуются с данными ДТА, свидетельствующими о повышении кристаллизационной способности стекол указанной системы при увеличении в них содержания ${\rm Al}_2{\rm O}_3$.

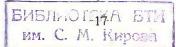
Представляло интерес проследить за влиянием замены SrO на BaO, вид ИК-спектров, а также на структурные особенности стекол.

Как свидетельствуют данные рис. 2, увеличение ВаО за счет SrO в стеклах с различным количеством SiO2 и Al2O3 приводит к сглаживанию спектра наряду с появлением большего числа полос поглощения, характеризующих наличие разнообразных структурных комплексов. Несмотря на то, что кристаллохимические характеристики Sr и Ва весьма близки:

	Sr^{2+}	Ba ²⁺
Ионный радиус	1,18	1,35(по Аренсу)
Иоппый потенциал	1,57	1,40
Эноргия диссоциации, ккал	256	260
Напряженность поля	0,278	0,248
Прочность единичной связи, ккал	32	33
Элоктроотрицательность элемента	1,0	0,9

однако весьма незначительные кристаллохимические различия вызывают ощутимые изменения в структуре стекла.

Ронтгоноструктурные исследования показали, что длина свяаи в силикатах не всегда равна 1,60 Å. Она может изменяться в пределах 1,5-1,8 Å [3,4]. Исходя из этого, различают "длинные, средние и короткие" связи Si - О . Удлинение и укорочивание связей происходит за счет двойного характера связи Si - О , а также перекрывания неподеленными парами р-электронов атома кислорода вакантных d-орбит кремния [3-5].


Состояние внешних электронов кислорода влияет на степень раст - правимодействия. Так как ионизированные атомы кислорода слабо удерживают внешние электроны, они активно участвуют в перекрытии, препятствуя образованию двойных связей кремния с мостиковым кислородом. Поэтому расстояние Si_O(-) укорачивается, а Si_- O- Si_H — удлиняется. Электрооттал — кивающий эффект анионных заместителей может привести — не только к удлинению связи Si_-O , но и к укорачиванию соседшей мостиковой связи O- Si_H.

Так как степень двоесвязности определяет прочность связи

Так как степень двоесвязности определяет прочность связи Si-O[4,5], повышение количества щелочноземельных катионов в стекле должно приводить к снижению прочности не только за счот разрывов трехмерной сетки структурного каркаса, но и за счот увеличения числа ослабленных мостиковых связей. Перероспределение связей в стекле зависит от степени электроотривательности и силы поля катиона и отражается на ИК -спектрах стекои.

Если в стекле с преобладанием SrO на BaO имеют место два довольно резких максимума при 1040 и 1010 см⁻¹ то с повышением количества BaO во всех случаях (см.рис.2) наблю-даются тенденция к сглаживанию спектра. И уже в стекле с преобладанием BaO над SrO ИК-спектр имеет широкую полосу поглощения в области 1000-1140 см⁻¹ с набором незначительных одинаковых по интенсивности максимумов.

Стронций обладает несколько большей силой поля катиона, поэтому он в меньшей степени участвует в перераспределении

связей, нежели барий. В связи с этим в бариевых стеклах создается менее дифференцированная структура за счет большего количества промежуточных группировок. Более высокая микронеоднородность стронциевых стекол по сравнению с бариевыми подтверждается данными электронной микроскопии.

Таким образом, четкость дифференциации структуры по типу комплексов постепенно уменьшается по мере перехода от стронциевых к бариевым стеклам. Это связано с тем, что введение катиона с большим ионным радиусом вызывает большее перераспределение связей в стекле и обуславливает более равномерное распределение ионов бария в стекле по сравнению с ионами стронция.

На степень полимеризации анионного каркаса оказывают влияние количества ${\rm Al}_2{\rm O}_3$ и ${\rm TiO}_2$ в опытных стеклах.

Литература

1. Плюснина И.И. Инфракрасные спектры силикатов. М., 1967, с. 46. 2. Ермолаева Е.В., Скоробогатова И.В. Инфракрасные спектры закаленных в стеклообразное состояние алюмосиликатных расплавов. — В сб.: Стеклообразное состояние. М.—Л., 1965, с. 215. 3. Белов Н.В. Геохимические аккуму — ляторы. Тр. ин—та кристаллографии, вып. 7. М., 1952, с. 73. 4. Воронков М.Г. О межатомных расстояниях и природе связей Si — Ов силикатах.—ДАН СССР, 138. 1, 1961, с. 106. 5. Паулинг Л. Природа химической связи. М.—Л., 1947, с.21.

УДК 666,19

В.Д.Мазуренко

О ВЗАИМОСВЯЗИ СВОЙСТВ И НЕКОТОРЫХ СТРУКТУРНЫХ ПАРАМЕТРОВ ШЛАКОВЫХ СТЕКОЛ

При разработке составов для синтеза стеклокристаллических материалов желательно использовать минералы, способные к широким изоморфным замещениям катионов. Необходимым условием при этом является получение мономинерального продукта, в котором отсутствуют напряжения на границах зерен и, следовательно, устраняется неизбежное ослабление структуры.

Согласно [1], состав стекол и расплавов может характери – зоваться выраженным в г-ионах отношением $\frac{0}{\text{Si}}$, получив – шим в литературе название кислородного числа (f_{Si}) и ис-