3.Ф.Манченко, В.Н.Самуйлова

## ИНФРАКРАСНО-СПЕКТРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ СТРУКТУРЫ ВИСМУТСОДЕРЖАЩИХ СТЕКОЛ\*

Висмутсодержащие стекла находят применение в качестве изолирующих, не вызывающих коррозии материалов покрытий на элементах полупроводниковых приборов и интегральных схем, защитных материалов против действия коротковолнового излучения, дозиметрических стекол. Окись висмута в такие стекла, как правило, вводится в значительных количествах [1, 2].

Структура многовисмутовых стекол (60-75 мол,%  ${\rm Bi}_2{\rm O}_3$ ) изучалась неоднократно. По мнению авторов [1,9. 10], изучавших боровисмутовые, боросвинцово- и борокадмиевовисмутовые системы, ион висмута в стеклах под действием внешнего электрического поля способен деформироваться и образовывать несимметричные группы (октаэдры  ${\rm BiO}_6$ ), которые являются основным структурным мотивом в висмутовом стекле.

Настоящая работа посвящена исследованию структуры стекол системы  $SiO_2$ - $B_2O_3$ - $Bi_2O_3$ -ZnO, содержащих 30-40 мол. %  $Bi_2O_3$ , с помощью инфракрасно-спектроскопического метода. Инфракрасные спектры стекол сняты на спектрометре ИКС-

Инфракрасные спектры стекол сняты на спектрометре ИКС-14. Получены также ИК-спектры порошкообразной окиси висмута и спеченной по режиму варки опытных стекол.

Спектр поглощения висмутсодержащих стекол является весьма сложным (рис. 1). В нем присутствуют достаточно интенсивные полосы с максимумами при 1170-1350; 900-940; 710-720 и 440-560 см<sup>-1</sup>. В коротковолновой части спектра имеется слабая полоса в области 1660 см<sup>-1</sup>.

Согласно [3], полоса поглошения 1650-1660 см<sup>-1</sup> принадлежит деформационной частоте Н-О-Н. Она имеется во всех спектрах, включая и спектр окиси висмута. Предрасположенность висмутовых стекол удерживать группы ОН, очевидно, связана со спецификой электронной структуры иона Ві, в образовании связей которого большую роль играют d-орбитали. Благодаря этому у иона Ві значительно усилены акцепторные свойства [4].

<sup>\*</sup> Работа выполнена под руководством докт. техн. наук, профессора Н.Н.Ермоленко.

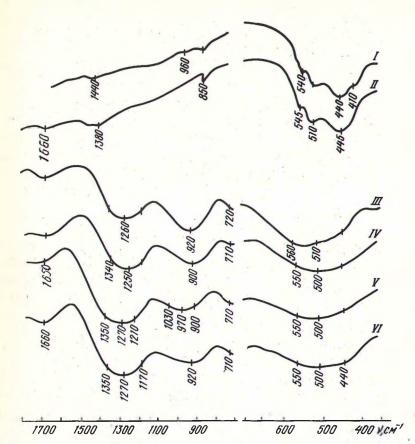



Рис. 1. Инфрак расные спектры поглощения окиси висмута и стекол системы  $SiO_2$ — $B_2O_3$ — $Bi_2O_3$ —ZnO: I — окись висмута (спек); II — окись висмута (порошок); III—V — стекла с постоянным содержанием  $SiO_2$  и  $Bi_2O_3$  и переменным —  $B_2O_3$  и ZnO (15–30  $B_2O_3$ и 25–15 ZnO); VI — стекло с 20ZnO и 10 мол.%  $SiO_3$ .

В спектре стекла с 25 ZnO и 15 мол. В 20 при постоящом содержании остальных компонентов (кривая III) наибопое интенсивно проявляются полосы с центрами максимумов при 920 см<sup>-1</sup>, несколько слабее – при 1260 и 510 см<sup>-1</sup>.

Согласно [3,5], полосы поглощения в области 900-930 и 450-500 см характерны для структур островного типа. В.А. Флоринская и Р.С.Печенкина при этом считают [5], что полоса при 910-920 см является значительно смещенной даже по сравнению с таковой у ортосиликатов. Ее существование в спектро стокол характеризует локальную неоднородность и показы-

вает, что полимеризация тетраэдров  $SiO_4$  полностью разрушена, а колебания атомов в тетраэдрах  $SiO_4$  сильно возмущены наличием большого количества катионов металла.

В.А.Колесова [6] полосу в этой области спектра связывает с наличием связей Si-O, которые образуются вследствие разрыва мостиковых связей Si-O-Si катионами-деполимеризаторами сетки. В исследуемых стеклах такую роль может катион цинка, который имеет большую силу поля, высокий заряд и способен оказывать сильное поляризующее действие на соседние ионы, в частности ионы  $O^{2-}$ , входящие в тетраэдры  $SiO_4$ [7]. Подтверждением может служить изменение конфигурации и интенсивности этой полосы при изменении содержания в окиси цинка. При его изменении на 5, а затем на 10 мол. (кривые 1У, У) и соответствующем увеличении ВоО сивность полосы падает, а спектр расширяется в коротковолновую область и захватывает диапазон колебаний кремнекислородных группировок с практически ненарушенными связями Si-O -Si , т.е. с уменьшением цинка становится заметным усиление степени полимеризации кремнекислородных тетраэдров. Указанная закономерность прослеживается и при замене части кремнезема на ZnO (кривая УІ), где опять наблюдается полосы в сторону длинных волн (максимум  $920 \text{ см}^{-1}$ ).

Полоса поглощения высокой интенсивности с широким максимумом в области 1170-1330 см<sup>-1</sup> обусловлена присутствием в стекле борокислородных группировок типа ВО<sub>3</sub> [3], в которых бор находится в трехвалентном состоянии. Эта полоса чувствительна к изменению в составах стекол количества борного ангидрида. С увеличением его содержания до 20-30 мол.% (кривые III, 1У, У) глубина полосы также усиливается.

Слабая полоса поглощения при 710-720 см<sup>-1</sup>, интенсивность которой практически не чувствительна к изменению состава, может быть отнесена, согласно [8], ко второму тону полосы 1170-1330 см<sup>-1</sup>, и характеризует наличие в структуре стекол боратных группировок.

Длинноволновая область спектра отличается присутствием широкой полосы в области 440-550 см $^{-1}$ , которая относится [3] к асимметричным группировкам островного типа и характеризует присутствие в структуре связей  $\mathrm{Si-O-Me}^{3+}(\mathrm{IY})$ . Частоты колебания могут сдвигаться, их положение зависит от  $\mathrm{Me}^{3+}-(\mathrm{O-Si})$  – расстояния. Полосы в этом диапазоне имеются и в эталонных спектрах окисей висмута, но более четко выра-

жены и раздроблены на ряд узких максимумов. Совпадение максимумов поглощения стекол и эталонов позволяет предположить, что в структуре стекла имеются висмуткислородные группировки с максимально деформированной октаэдрической решеткой. Ион висмута, очевидно, выступает преимушестыенно в 3-валентном состоянии, поскольку эта область спектра карактеризуется [3] наличием трехвалентных катионов.

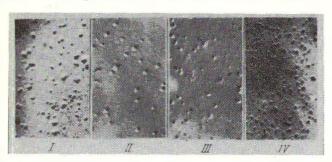



Рис. 2. Электронно-микроскопические снимки стекол III-VI.

На электронно-микроскопических снимках стекол (рис.2) отчотиво просматриваются округлые микронеоднородности, похожие на ликвационные, несмотря на то что стекла характеризу потся повышенной устойчивостью к кристаллизации. Они остаются прозрачными при 2-часовой градиентной обработке в интерымие 300-1000°С (до полного расплавления).

## Литература

1. Павлушкин Н.М. и Журавлев А.К. Легкоплавкие стекла. - М., 1970. 2. Погожев Ю.Н., Клыкова Г.П. Припо очное стекло. А.с. (СССР) 450782.-Бюл.изобр. 1974, № 43.

3. Плюснина И.Н. Инфракрасные спектры силикатов. - М.,
1967; Инфракрасные спектры минералов. - М., 1977. 4. Ах мотов Н.С. Неорганическая химия. - М., 1975. с. 423-435.

5. Флоринская В.А. и Печенкина Р.С. Инфракрасные спектры натриевосиликатных стекол и связь их со структурой. - Оптика и спектроскопия, 1956, т. І, вып. 5, с. 690-709. 6.Колосова В.А. Инфракрасные спектры поглощения бариево- и
стропциовосиликатных стекол. - Изв. АН СССР. Сер. Неорган.
мат-лы, 1968, т. 4, № 9. с. 1612-1614. 7. Кузнецова
Г.Н., Хойфец В.С., Шевяков А.М. Исследование структуры
патриовоцирконосиликатных стекол методом инфракрасной спектроскопии. - Стеклообразное состояние. Тр. ІУ Всесоюз.совещ. -

М.-Л., 1965, с. 224-226. 8. Колебательные спектры и строение стеклообразующих окислов в кристаллическом и стеклообразном состояниях. Е.П.Маркин, В.В.Обухов - Денисов, Т.А.Сидоров и др. - Тр. 3-го Всесоюз. совещ. М.,-Л., 1960, с. 207-213. 9. Adli M. Bishay. Vismuth lead borate glass dosimeter for highlevel gamma measurements. Physics and Chem. Glass, 1961, 2, N 2, p. 33-38. 10. Janakirama B.V. Ra O. Dielectric Propertes of Classes in the Systems Bi<sub>2</sub>O<sub>3</sub>-CdO-SiO<sub>2</sub>; Bi<sub>2</sub>O<sub>3</sub>-CdO-B<sub>2</sub>O<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub>-CdO-GeO<sub>2</sub> and Yheir Re lation to the Structure of Glasses. Journ. Amer. Ceram. Soc., 1962, 45, N 11, p. 555-563.

УДК 666.117.3

Н.Н.Ермоленко, А.М.Науменко, Е.Ф.Карпович

СТЕКЛООБРАЗОВАНИЕ И КРИСТАЛЛИЗАЦИОННЫЕ СВОЙСТВА СТЕКОЛ СИСТЕМЫ MgO-SrO-B<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>

Развитие различных отраслей народного хозяйства, в том числе химической и авиационной промышленности, выдвигает перед исследователями задачи синтеза новых стеклообразных высокотемпературных материалов, работающих при повышенной температуре.

Определенный интерес с этой точки эрения представляет система  ${\rm MgO-SrO-B_2O_3-Al_2O_3-SiO_2}$ , в которой в результате систематического исследования зависимостей свойств от состава [1] разработаны химически устойчивые стекла [2] с коэффициентом теплового расширения  $(20-27)\cdot 10^{-7}{\rm rp}^{-1}$  и температурой начала размягчения  $870-890^{\rm o}$ C. Ранее эта система не изучалась. Известны лишь отдельные исследования частных четырехкомпонентных систем;  ${\rm MgO-B_2O_3-Al_2O_3-SiO_2}$  [3-6,14],  ${\rm SrO-B_2O_3-Al_2O_3-SiO_2}$  [5] и  ${\rm MgO-SrO-Al_2O_3-SiO_2}$  [5] и  ${\rm MgO-SrO-Al_2O_3-SiO_2}$  [7].

Настоящая работа посвящена изучению стеклообразования и кристаллизационных свойств стекол системы MgO-SrO- $B_2O_3$ -  $Al_2O_3$ -  $SiO_2$  в области составов, характеризующихся следующим содержанием окислов: 65-75  $SiO_2$ ; 2,5-7,5  $B_2O_3$ ; 2,5 - 30  $Al_2O_3$ ; 2,5-30 MgO и от 0 до 5 мол.% SrO (рис.1).