Г.С. Вахранев, доцент; Л.Ф. Донченко, доцент

ТЕПЛОВАЯ ОБРАБОТКА ФАНЕРНОГО СЫРЬЯ В БАССЕЙНАХ МАЛОЙ ЕМКОСТИ

The resalts of investigation of plywood material heattreatment is given.

Шпон, срезаемый при лущении с чурака, должен быть плотным и не иметь трещии и разрывов. Однако вследствие того, что во время срезания он выпрямляется и изгибается и противоположном направлении, на его левой стороне возникают растягивающие напряжения поперек волокон древесины, которые приводят к образованию трещин. Величину этих напряжений определяют по формуле

$$\sigma = \frac{E \cdot S}{2 \cdot r}$$

где E – модуль упругости в направлении поперек волокон, МПа; S – толщина шпона, м; r первоначальный радиус кривизны слоя шпона, м.

Для уменьшения величины напряжения необходимо уменьшить величину модули упругости, что достигается проваркой древесины. Сочетание температуры и влажности дает наилучшие результаты изменения пластичности древесины.

Если древесина по всей разлущиваемой зоне чурака имеет одинаковую температуру а значит, и пластичность, величина внутренних напряжений в шпоне возрастает с умень шением диаметра чурака.

Проваривание чураков осуществляют в варочных бассейнах. Для небольших производств могут быть рекомендованы варочные бассейны с мотовилом или цепные. В этой связи определен термический коэффициент данных нагревательных устройств. Проведси анализ расхода тепловой энергии на нагревание кряжей (чураков).

Исходные данные для расчетов: диаметр чураков -0.22 м, длина чураков -1.6 м, объем чурака -0.066 м³, влажность древесины -80%, порода сырья - береза. Вместимость бассейна с мотовилом -7.3 м³ (110 чураков), цепного бассейна -13.8 м³ (209 чураков). Температура воды в бассейнах (расчетная) -80° С. Часовая производительность бассейна с мотовилом -1.6 м³, цепного бассейна -4 м³. На рис. 1 и 2 представлены бассейн с мотовилом и цепной варочный бассейн.

Расход тепловой энергии в устройствах для проваривания складывается из ее полечных затрат на оттаивание и нагревание сырья и тепловых потерь. Тепловые потери складываются из конвективной теплоотдачи с открытой поверхности воды, затрат на испарение воды, теплопотери через ограждения, затрат на начальный прогрев ограждений и транспортных средств.

Общий расход тепла на нагревание древесины [1]

$$Q = Q_1 + Q_2$$

где Q_1 – теплота, затраченная на оттаивание и нагрев древесины, на нагревание коры; Q_2 потери теплоты;

$$Q_1 = q_1 + q_2,$$

где q_1 – расход теплоты на оттаивание и прогрев древесины, кДж/м³; q_2 – расход теплоты на нагревание коры, кДж/м³;

$$q_1 = \rho_W \cdot c_{(-)} \cdot t_0 + \rho_{\text{6a3}} \cdot \frac{W_{\text{H}} - W_{\text{H3}}}{100} \cdot \gamma + \rho_W \cdot c_{(+)} \cdot t ,$$

где ρ_W – плотность древесины, кг/м³; $\mathfrak{e}_{(-)}$ – удельная теплоемкость замороженной древесины, кДж/(кг. 0 С); γ – скрытая теплота плавления льда, кДж/кг; $W_{\text{н}}$, $W_{\text{нз}}$ – соответственно

влажность древесины и содержание воды в древесине, %; t_{cp} – средняя температура воды в конце обработки, ${}^{0}C$;

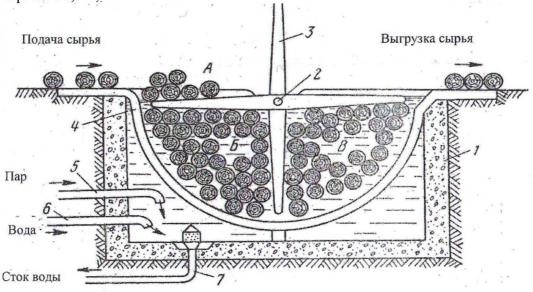


Рис. 1. Варочный бассейн с мотовилом: 1 – стены бассейна; 2 – поперечный вал; 3 – мотовило; 4 – направляющие швеллеры; 5 – паропровод; 6 – водопроводная труба; 7 – спускная труба; А, Б, В – секции бассейна

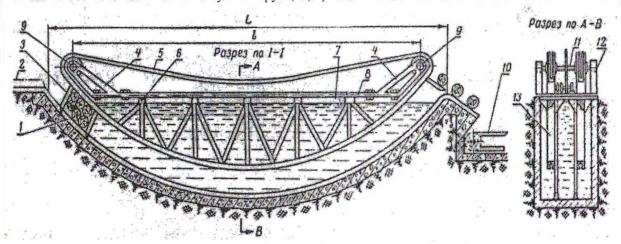


Рис. 2. Цепной варочный бассейн: 1 — направляющие рельсы; 2, 3, 5, 10 — транспортеры; 4 — кронштейны; 6 — швеллер; 7 — каркас крышки; 8 — крышка; 9 — звездочки; 11 — валы; 12 — подшипники; 13 — направляющие цепей транспортера

$$q_2 = \pi D \cdot l \cdot b \cdot n \cdot q'_2$$

где D — диаметр чурака, м; l — длина чурака, м; b — толщина коры, м, b = 0,01 м; n — количество чураков в бассейне, шт.; q'_2 — расход теплоты, кДж/м³;

$$q_2' = \rho_{w\kappa} \cdot c_{\kappa} \cdot (t_1 - t_0) + (\rho_{w\kappa} - \rho_{0\kappa}) \cdot (\gamma - c_{\pi} \cdot t_0) + (\rho_{w\kappa} - \rho_{0\kappa}) \cdot c_{\kappa} \cdot t_1,$$

где $\rho_{W\kappa}$. ρ_{W0} – плотность коры влажной и в абсолютно сухом состоянии (соответственно 540 и 300 кг/м³); c_{κ} – теплоемкость коры, кДж/(кг. 0 C); t_{1} – температура воды, 0 C; t_{0} – начальная температура древесины, 0 C; c_{π} – удельная теплоемкость льда, кДж/(кг. 0 C);

$$Q_2 = q_3 + q_4 + q_5$$

где q_3 – потери тепла через стенки и дно бассейна, кВт; q_4 – потери тепла от конвективной теплоотдачи с открытой поверхности, кВт; q_5 – затраты тепла на испарение воды с открытой поверхности бассейна, кВт;

$$q_3 = F \cdot k \cdot (t_1 - t_0) \cdot 10^{-3}$$

где F – поверхность стенок и дна, M^2 ; k – коэффициент теплопередачи, $BT/(M^2 \cdot {}^0C)$;

$$q_4 = F_n \cdot \alpha \cdot (t_1 - t_B) \cdot 10^{-3}$$

где F_n – площадь теплоотдающей поверхности, M^2 ; α – коэффициент теплообмена, можно принять равным 25–30 Bt/(M^2 . 0 C); t_B – температура окружающего воздуха, 0 C;

$$q_5 = 2490 \cdot F_n \cdot i$$
,

где i – количество испаряющейся воды, кг/(m^2 -с), для воды температурой $70-80^{0}$ ($i \approx 20 \cdot 10^{-4}$ кг/(m^2 -с).

Результаты расчета расхода теплоты на нагревание древесины в бассейнах с мотови лом и цепного варочного приведены в таблице.

Таблица **Результаты расчета расхода теплоты на нагревание древесины**

Статьи расхода теплоты	Расход теплоты на нагревание древесины в бассейнах			
	с мотовилом		цепном варочном	
	кДж/м ³	на полный объем, кВт	кДж/м ³	на полный объем, кВт
Расход тепла на оттаивание и нагрев древесины	197480	400,0	197480	757
Расход тепла на нагревание коры	18000	37,2	18000	70
Потери тепла через ограждения	14400	8,4	14400	16
Потери тепла от конвективной тепло- отдачи с открытой водной поверхности	26640	15,5	20160	22
Потери тепла на испарение воды с открытой поверхности бассейна	74160	43,0	26280	53
Расход пара на 1 м ³ чураков, кг/м ³	350	113	12.8	110
Расход пара с учетом всех возможных расходов (10 %), кг/м ³		124		120
Коэффициент полезного действия бассейна, %		79		82

Из таблицы следует, что расход пара на 1 м³ сырья в цепном бассейне ниже, а коэф фициент полезного действия выше, чем для бассейна с мотовилом. Кроме того, бассейны с мотовилом имеют недостатки в конструкции, что приводит нередко к перекосу и заклиниванию чураков, а открытое зеркало воды – к большим потерям тепла при испарении воды и конвекции. В цепном бассейне две трети поверхности зеркала воды закрыты.

Цепной варочный бассейн рекомендуется использовать на предприятиях малой мощности по выпуску шпона или фанеры. На базе варочного бассейна и лущильного станки может быть организована механизированная поточная линия.

ЛИТЕРАТУРА

1. Серговский П.С. Гидротермическая обработка и консервирование древесины. М.: Лесная промышленность, 1987.