AATOPUTMU3ALUNA U TPOTPAMMUPOBAHMUE
ALGORITHMIC AND PROGRAMMING

YK 004.272.2

A. A. Prihozhy!, O. N. Karasik?
'Belarusian National Technical University
ISsoft Solutions (part of Coherent Solutions)

ADVANCED HETEROGENEOUS BLOCK-PARALLEL
ALL-PAIRS SHORTEST PATH ALGORITHM

The problem of finding shortest paths between all pairs of vertices in a large-size graph has many
application domains in industry, technology, science, economics, and society. The algorithms solving the
problem and proposed in the literature target either lowering a computational complexity or efficient
exploitation of computational resources. This paper proposes the advanced heterogeneous block-parallel
shortest paths algorithm that is a result of further development and improvement of known blocked
algorithms. Starting from the homogeneous blocked algorithm, it distinguishes four types of blocks:
diagonal, vertical of cross, horizontal of cross, and peripheral. To speed up the computations, separate
algorithms for all block types have been developed, which reduce the number of iterations in nested loops
and account for the sequential reference locality of data in CPU caches. The algorithms improve the
spatial and temporal reference locality in big data processing. Experiments carried out on a server
equipped with two Intel Xeon E5-2620 v4 processors have shown the speedup of up to 60—70% the
proposed single- and multi-threaded advanced heterogeneous blocked algorithms yield over the single-
and multiple-threaded homogeneous blocked Floyd — Warshall algorithms.

Keywords: shortest path, blocked algorithm, heterogeneous algorithm, multi-core system,
throughput.

For citation: Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs
shortest path algorithm. Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023,
no. 1 (266), pp. 77-83. DOIL: 10.52065/2520-6141-2023-266-1-13.

A. A. IIpuxosxuii!, O. H. Kapacuk?
'Benopycckuii HAIMOHANBHBIN TeXHHUIECKHH YHUBEPCUTET
? iHocTpaHHOE TIPOM3BOACTBEHHOE YHHTapHOE npeanpusTue «Mccopt Comomensy

YCOBEPHIEHCTBOBAHHBIN PA3HOP0gHBIﬁ BJIOqHuO—HAPAJIJIEJIbeIfl
AJITOPUTM IIOUCKA KPATYAUIIUX IIYTEU HA T'PA®E

3ajaua HaXOXKICHUS KpaT4alinx myTed MeXIy BCEMH MapamMH BepIluH rpada nMeeT MHOXECTBO
oOiacTell MprMeHeHHs B POMBIIIJICHHOCTH, TEXHHUKE, HayKe, SKOHOMUKE 1 obmiectse. [IpenioxeHHbe
B JIUTEpAType aJrOpUTMBI, PEIIAroIne 3Ty 3aady Ha rpadax 60JbIIoro pa3mMepa, HarmpasieHs JIN00 Ha
CHIDKEHHE BBIYMCIUTENFHON CI0XKHOCTH, JINO00 Ha 3()h()EeKTHBHOE MCIOIB30BaHUE PECYPCOB BBIYMCIH-
TEJNBHOW CHCTeMBI. B cTaThe mpeiaraercsi yCoOBEpIICHCTBOBAHHBIA Pa3HOPOIHBIN OJI0YHO-TIapaiesb-
HBII QJITCOPUTM IIOUCKA KpaTYalIIUX MyTeH, KOTOPBIX ABJIAETCS PE3YJIbTaTOM JajlbHEMILEro pa3BUTHS U
YITy4IIEHUS! U3BECTHBIX OJIOYHBIX aNrOpuTMOB. OTTaIKUBAsSCh OT OAHOPOIHOTO OJIOYHOTO alropuTMa,
OH pa3jnyaeT YeThIpe THIA 0JIOKA: ITHArOHANbHBIA, BEPTUKAIBHBIA MEPEKPECTHBIN, TOPU30HTAIBHBIN
TIePEKPECTHBIN U epu(epuiHbIiA. J[1s yCKopeHus BRIYHCIECHUH B CTaThe pa3pab0TaHbI OTACIIBHEIE al-
TOPUTMBI TSI KQXKI0TO THUIA OJI0KA, YMEHBIIAIOMINE KOJTUIECTBO UTEPALUii BO BIOKEHHBIX ITUKJIAX U
YYHUTBHIBAIOMINE CTPOKOBOE pa3MeIleHHe JaHHBIX B K3IIaX Mporeccopa. AJTOPUTMBI YIy4IIaloT Ipo-
CTPAaHCTBEHHYIO I BPEMEHHYIO JIOKAJIbHOCTH MPU 00paboTKe OONBIINX JAHHBIX. DKCIIEPUMEHTEHI, IPO-
BEIIEHHBIC Ha CEpBEpe, OCHAIIEHHOM ABYMs npoueccopamu Intel Xeon E5-2620 v4, mokazanu moBsImie-
HUE IPON3BOIUTEIHLHOCTH PEATIOKESHHBIX OHO- 1 MHOTOIIOTOYHBIX YCOBEPIICHCTBOBAHHBIX PA3HOPO-
HBIX OJOYHBIX adroputMoB A0 60-70% MO CpaBHEHHIO C OJHO- W MHOTONOTOYHBIMH OJOYHBIMH
anroputmamu ®noiina — Yopuemnia.

Tpyabl BITY Cepuss3 Ne 1 2023

78 Advanced heterogeneous block-parallel all-pairs shortest path algorithm

KnioueBsble ciioBa: kparyaiiumii myTh, OJOYHBIN alrOPUTM, pa3HOPOIHBIH aJIrOPUTM, MHOTOsIIIep-

Has CUCTEMA, NIPOU3BOAUTCIBHOCTD.

Jost nurupoBanmst: [Ipuxoxwuii A. A., Kapacuk O. H. YcoBepieHcTBOBaHHBIN pa3HOPOIHBIN OJI0YHO-
TapaJuIeIbHBII alITOPUTM ITOHCKa KpaTdaiinux myTteit Ha rpade // Tpyast BI'TY. Cep. 3, ®uzuxo-marema-
THYecKHe Hayku ¥ mHpopmatuka. 2023. Ne 1 (266). C. 77-83. DOI: 10.52065/2520-6141-2023-266-1-13

(Ha anru.).

Introduction. The problem of searching for
shortest paths in weighted graphs is widely exploi-
ted to find optimal solutions in industry, technology,
science, economics, and society. The algorithms
[1-15] of solving the problem either try to decrease
the computational complexity, or to efficiently
account for the features of computer architectures to
speedup computations. In the paper, we consider
all pairs shortest path problem on large graphs.
The blocked algorithms [10-15] aim for efficient
parallelization on multi-processor (multi-core) systems
and utilization of CPU hierarchical memory.
The contribution of the paper is the development of
an advanced fast blocked heterogeneous algorithm
for shortest paths search in two versions: single- and
multiple-threaded parallel.

Main part. Let a graph G = (V, E) be const-
ructed of a vertex set J of cardinality N and a set £ of
edges represented by matrix W of weights. If w;; # oo,
it is a weight of edge (i, /), otherwise (i, j) ¢ E. In the
blocked Floyd — Warshall (BFW) Algorithm 1, a
matrix of path distances is decomposed into matrix
B[M x M] of blocks with block-size S and block-
count M =N/ S. Figure 1 illustrates the process and
order of calculating blocks of DO, C1, C2 and P3
types. The universal BCA Algorithm 2 is a classic
Floyd — Warshall algorithm, in which b1;;, b2;; and
b3y, are elements of blocks B', B and B> respectively.
It recalculates each block element S times; therefore,
has the computational complexity of O(S®). The
universalism of BCA is a source of slowing down
the computations in BFW.

In the paper, instead of the single BCA, we
introduce four other D0, C1, C2 and P3 algorithms,
which have the same names as the block types
have, and have the numbers of 1, 2, 2 and 3
arguments respectively. The objective of our work
is to make the new algorithms DO, C1, C2 and P3
faster by accounting for features of the block types
and the data dependences between blocks. Each
block has the row-major layout in CPU hierar-
chical memory and support spatial locality during
BFW operation. At M =2, BFW calls the four
algorithms in the order as follows:

DO(BO,o), C1 (Bl,o, BO,()), C2(BO,1, BO,());
P3(B1,1, Bio, Boy), DO(B1,1), CI(Boi, Bi,);
C2(Bi1, Bi,1), P3(Boo, Bo,1, Biyo).

The following procedure lies in the basis of DO,
C1, C2 and P3 construction:

Tpyasl BITY Cepus3 Ne 1 2023

Algorithm 1: Blocked Floyd—Warshall (BF V)

Input: A number N of graph vertices
Input: A matrix W[NxN] of graph edge weights
Input: A size S of block
Input: A number M < N/ S of blocks
Qutput: A blocked matrix B[MxM] of path distances
B—Ww
form«0toM—1do

Bunm™! <~ BCA(Bun.m, Bmn.m, Bmm) // DO
forve—OtoM—1do
if v # m then
Byn™! < BCA(Bym, Bvn, Bim) // C1
Buny™ < BCA(Bu.y, Bim, Bmy) /1 C2

forve—0OtoM—1do
if v # m then
foru«—0OtoM—-1do
if u # m then
Byy < BCA(Byu, Bym, Bmyu) // P3
return B

Algorithm 2: Block calculation BCA

Input: S is size of block
Input: B!, B?, B3 are input blocks
Output: B! is recalculated block
fork<—0toS—1do
fori<—0toS—1do
forj«<—0toS—1do
sum — bzi,k + b3kJ
if b1;; > sum then bl;; < sum;

return B!
1 2 3 4
1 P3 C1 P3 P3
5, | a2 c2 c2
3 P3 C1 P3 P3
4 P3 Cl1 P3 P3

Fig. 1. lllustration of BF W operation: cross moves
from top-left to bottom-right corner; C1 and C2
are executed after DO, and P3 after C1 and C2

A. A. Prihozhy, O. N. Karasik

79

The graph is extended by stepwise adding of
vertices.

A sequence B'(1)...B'(k)...B'(S) of states of the
B' block is generated where £ is a current number of
rows and/or columns the block has.

The elements of row & and/or column £ that are
path distances from and to vertex k respectively are
calculated over elements of matrix B'(k — 1).

In their turn, the matrix B'(k— 1) is recalculated
into B'(k) over the elements of row k and/or column k.

Algorithm DO. Since DO calculates block B'
over itself without involving other blocks, both row
k and column k are added to B'(k—1). DO starts
operation from B'(1) of size 1 x 1 and step-by-step
increases the block size (Fig.2). The above-
described procedure calculates row &, column £, and
B'(k) over B'(k—1).

We have applied a set of formal transformations
to the procedure and obtained Algorithm 3 (D0) of
calculating the diagonal block. The transformations
include 1) reordering of operations; 2) resynchro-
nizing operation executions from neighbour itera-
tions of loop to calculate b1, ;(k — 1) over b1;,(k — 2),
bliri(k—1), and blyi1j(k—1), and to calculate
blix(k) and b1k (k) over bl;(k—1), bl;x(k—1) and
blj(k— 1) within the same iteration; 3) merging
nested loops. DO calculates blocks b1;(k— 1),
i,j=0...k—1as:

bl ,(k—1)=min{bl, ,(k—2), z};
z=bl,,(k=1)+bl,_ ;(k-1).

The element b1;4(k) of column £ is calculated
using the equation as follows:

bl (k)= ,15%?}3_1(”1@ Jk=1)+b1,, (k=1)).

The element b1y (k) of row k is calculated by the
following equation:

bli

bly

Bl, (k)= min (b1, (k=1)+bl,,(k=1)).

In algorithm DO, two loops along i and j have
the iteration scheme that produces k iterations,
which is less than § iterations in BCA. The loops
consequently process matrices of growing size
[1x1],[2x2]...[SxS], which indicate the DO
has a temporal locality property. Comparison of DO
and BCA shows that DO has smaller number of
iterations in the nested loops and reduces the cache
pressure. Reduction p in the number of executions
of the most nested loop body is evaluated with

p(DO/BCA)=6/(2+3/S+1/S5%).

When § — oo, the reduction p(D0/BCA) — 3.
The number of accesses to memory is also reduced.

Algorithm C1. Since it calculates a vertical
block B' of cross over itself and block B, column k
is added to B'(k — 1) without adding row & (Fig. 3).
C1 starts operation with B'(1) of size Sx1 and
increases the block-size in column-wise manner.

Algorithm 3: Calculating diagonal block D0

Input: A diagonal block B!
Input: A size S of block
Output: A recalculated diagonal block B!
for k < 2 to Sdo
kl«— k-1
fori < 1tokl do
forj < 1to k1l do
S — bli,kl + blkl’,'
S0 bl,",' + blj,k
S| blk,,' + blw’
kl < S-1
fori—1tokl—1do
forj«— 1tokl—1do
S — bli,kl + blkl’,'
return B'

ifbliJ>Sz then blw’ — 52
if b1,;> s then b1, — s
if b1y, > 51 then bly; < s,

ifbliJ>S2 then bl[J<— S2

k

Fig. 2. Recurrent calculation of diagonal block D0

Tpyabl BITY Cepuss3 Ne 1 2023

80 Advanced heterogeneous block-parallel all-pairs shortest path algorithm

bl

S

Fig. 3. Recurrent calculation of block C1 of cross

The above-described procedure calculates column
k and B'(k) over B'(k—1). We have applied to the
procedure the transformations like those from the DO
case and obtained Algorithm 4 (C1) of calculating the
vertical block of cross. Algorithm C1 calculates
blifk—1),i=0...S—1,7=0...k— 2 using equation

bli j(k - 2)9
bl, , (k)=minq
’ bl (k=1)+b3,,.
The equation as follows aims for calculating
element b1, (k) of column k.

bl (k)= min (Bl ,(k=1)+b3,;).

In algorithm C1, the loop along j has the iteration
scheme that produces £ iterations, which is less than S
iterations in BCA. The loop consequently processes
matrices of growing size [Sx 1], [Sx2] ... [SxS],
which indicate that C1 has a property of temporal
reference locality. Comparison of C1 against BCA
shows that C1 decreases the cache pressure. In C1, the
overall number of iterations of the most nested loop is
smaller than in BCA, and the reduction is evaluated by

p(C1/BCA)=2/(1+5/5+4/5%).

Algorithm 4: Calculating vertical block C1 of cross

Input: A block B!
Input: A block B?
Input: A size S of block
Output: A recalculated block B'
fork<—1toS—1do
kl k-1,
fori<0toS—1do
for j < 0 to k1 do
S — bli,kl + b3k1,,'
S0 ¢— bl,',,- + b3j,k
kl «—S—-1
fori<0toS—1do
forj«<—Otokl —1do
Sz%bli,k1+b3k1,,' ifbli,,'>52 then blw%Sz
return B!

ifbliJ>S2 then bliJ — 52
if b1,; > so then b1, < 50

When § — oo, the reduction p(C1/BCA) — 2.
The number of accesses to memory is also reduced.

Algorithm C2. Since it calculates a horizontal
block B' of cross over itself and block B2, only
row k is added to B'(k — 1) without adding column
k (Fig. 4). C2 starts operation with B'(1) of size
IxS and increases the block size in row-wise
manner.

Fig. 4. Recurrent calculation of block C2 of cross

Tpyasl BITY Cepus3 Ne 1 2023

A. A. Prihozhy, O. N. Karasik

81

The above-described procedure calculates row &
and block B'(k) over B'(k—1). Transformations
like those from the DO case have been applied to the
procedure, yielding Algorithm 5 (C2) of calculating
the horizontal block of cross. C2 calculates
blifk—1),i=0...k—2,j=0...5— 1 using equation

bl, (k-2), }

bl. .(k—1)=min
”j() {b2i’,{_1 (k-D+ blk_l,j (k-1).

Algorithm 5: Calculating horizontal block C2 of cross

Input: A block B!
Input: A block B2
Input: A size S of block
Output: A recalculated block B!
fork«—1toS—1do
kl «—k-1;
fori < Oto k1 do
forj<—O0toS—1do
8§y — sz,kl + blku
8o ¢— b2y; + bl
kl «S-1
fori<—Otokl —1do
forj—0toS—1do
82 ¢= b2ix1 + bl
return B!

ifbli’j > s, then blj’j “— 5
ifblk,j > 50 then blk,j “— S0

ifbli,j > s, then bli,j — 85

The following equation aims for calculating
element b1; (k) of column £.

bl (k)= min (b2, +bl, ;(k-1)).

In algorithm C2, the loop along i has the iteration
scheme that produces £ iterations, which is less than S
iterations in BCA. The loop sequentially processes
matrices of growing size [1 XS], [2 XS] ... [S*S],
which indicate the C2 obtains a property of temporal
reference locality that reduces the cache pressure.
In C2, the reduction of the overall number of iterations
of the most nested loop and of the overall number of
accesses to memory is the same as in C1.

The nest of three loops across &, i and j of
algorithms DO, C1 and C2, carries out computation
of block B'. It calculates variables 50, s1 and s2, and
matrix elements b1,;, b1;x and b1;; upon elements of
blocks B!, B* and B>. It traverses the rows and
columns & — 1, k£ and i multiple times. In contrast to
the rows which support sequential reference locality
in hierarchical memory, the columns are deployed
in different lines and increase the data traffic in
hierarchical cache memory. To improve the data
locality, we have transformed the algorithms to
collect the column elements in one-dimensional
arrays and then access them intensively.

Algorithm P3. It calculates a peripheral block B'
over itself and the B? and B* blocks. Since the graph
extension-based procedure cannot be used effectively

in this case, we derive P3 from transforming the
classical Floyd-Warshall Algorithm 2. To provide the
sequential reference locality for all blocks B', B* and
B?, we have reordered the three k —i —j nested loops
to the nest i — k —j of loops.

Results. We implemented the homogeneous
blocked Floyd-Warshall algorithm (BFW) and the
advanced heterogeneous blocked algorithm (HBA) in
C++ language using GNU GCC compiler v10.2.0.
Each algorithm has two implementation versions:
single-thread and multiple-threaded. The algorithms
were parallelized at task level and compiled to multiple-
threaded applications by means of OpenMP 4.5.
We carried out the vectorisation of operations in all
program codes to speed up the computations.
The experiments were done on a rack server equipped
with two Intel Xeon E5-2620 v4 processors. Each
processor contains 8 cores and 16 hardware threads.
Every core is equipped with private L1 (32 KB) and
L2 (256 KB) caches, and the cores within each
processor share inclusive L3 (20 MB) cache.

To measure algorithm parameters on the multi-
core system architecture, we used the Intel VTune
Profiler 2021.8. The experiments were conducted
on randomly generated complete weighted graphs.
The paper describes results for graphs of 4800 ver-
tices. Each experiment was carried out multiple
times and verified.

Table 1 reports the execution time of the single-
thread sequential BFW and HBA. BFW consumed
from 35.4 to 54.0 sec of CPU, meanwhile HBA
consumed from 29.6 to 35.2 sec. The speedup of
HBA over BFW is from 6.1% to 59.6%.

Table 1
Execution time and comparison of single-thread
HBA and BFW on graph 4800

Block- | Block BFW, HBA, Speedup,

matrix | count sec sec %
2x2 4 53.99 33.82 59.6
3x3 9 35.40 29.61 19.6
4x4 16 35.83 31.90 12.3
5%5 25 36.15 3241 11.5
66 36 36.03 33.13 8.8
8x8 64 37.34 35.19 6.1

Table 2 reports the execution time of multiple-
threaded BFW and HBA parallelized by OpenMP.
BFW consumed from 11.2 to 57.5 sec of CPU,
meanwhile HBA consumed from 10.9 to 43.6 sec.
The speedup of HBA over BFW is from 0.4%
to 71.2%.

We explain the reduction of speedup at
increasing M by the rapid growth of the number of
peripheral blocks and by the insignificant speedup
of P3 over BCA, and by the fact that P3 loses DO,
C1 and (2 significantly.

Tpyabl BITY Cepuss3 Ne 1 2023

82 Advanced heterogeneous block-parallel all-pairs shortest path algorithm

Table 2
Execution time and comparison of multiple-threaded
HBA and BFW on graph 4800

Indeed, the fraction of P3 blocks in the total
block count is evaluated as (M — 1)/ M? and is
0.25, 0.44, 0.56, 0.64, 0.69, 0.77 and 0.94 for

M=2,3,4,5, 6, 8 and 32 respectively. There-
fore, HBA is more effective for non-large values
of M.

Conclusion. The proposed advanced heteroge-

Block- | Block BFW, HBA, Speedup,)
matrix | count sec sec % neous block—parallellall pairs shortest path algo-
0 n 56.01 073 712 rlthm no matter single- or multiple-threaded
considers the features of four types of blocks and
33 o 3750 38.27 202 overcomes the homogeneous blocked Floyd-
4x4 16 50.37 35.04 41.3 Warshall algorithm by up to 60—70% regarding the
SXS 25 56.19 | 43.64 288 reduction of execution time on multi-core systems.
6X6 36 31.89 31.76 0.4 The DO algorithm of calculating the diagonal block
8x8 64 11.21 10.94 2.4 is a promising alternative to the classic Floyd-

Warshall algorithm with respect to the throughput
since it has the property of spatial and temporal
references locality and can handle efficiently the
processor’s hierarchical memory.

References

1. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey of Shortest-Path
Algorithms. ArXiv: 1705.02044v1 [cs.DS], 4 May 2017, 26 p.

2. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of Shortest
Path Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7, no. 1&2, pp. 20-30.

3. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.

4. Prihozhy A.A., Mattavelli M., Mlynek D. Data dependences critical path evaluation at C/C++
system level description. International Workshop PATMOS'2003, Springer, 2003, pp. 569-579.

5. Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path
Algorithm in OpenMP 3.0. 2™ International Conference on Advances in Computer Science and Engineering
(CSE 2013). Los Angeles, CA, July 1-2, 2013, pp. 109-112.

6. Prihozhy A. A. Analiz, preobrazovaniye i optimizatsiya dlya vysokoproizvoditel 'nykh parallel’nykh
vychisleniy [Analysis, transformation and optimization for high performance parallel computing]. Minsk,
BNTU Publ., 2019. 229 p. (In Russian).

7. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli. M. Pipeline Synthesis and Optimization
from Branched Feedback Dataflow Programs. Journal of Signal Processing Systems, Springer Nature,
2020, vol. 92, pp. 1091-1099. Available at: https://doi.org/10.1007/s11265-020-01568-5 (accessed 29.09.2022).

8. Prihozhy A. A., Karasik O. N. Inference of shortest path algorithms with spatial and temporal locality
for big data processing. Big Data and Advanced Analytics: sbornik nauchnykh statey VIII Mezhdunarodnoy
nauchno-prakticheskoy konferentsii [Big Data and Advanced Analytics: Proceedings of VIII International
Conference]. Minsk, Bestprint Publ., 2022, pp. 56-66.

9. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest
paths algorithms. System analysis and applied information science, 2019, no. 4, pp. 10—18. Available at:
https://doi.org/10.21122/2309-4923-2019-4-10-18 (accessed 29.01.2023). (In Russian).

10. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm.
Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857-874.

11. Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache perfor-
mance. I[EEE Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp.769-782.

12. Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm. System analysis
and Applied Information Science,2017,no0. 3, pp. 68—75. Available at: https://doi.org/10.21122/2309-4923-2017-
3-68-75 (accessed 29.01.2023) (In Russian).

13. Karasik O. N., Prihozhy A. A. Threaded block-parallel algorithm for finding the shortest paths on
graph. Doklady BGUIR [Reports BSUIR], 2018, no. 2, pp. 77-84 (In Russian).

14. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-
core implementation. Systemnyy analiz i prikladnaya informatika [System Analysis and Applied Information
Science], 2022, no. 3, pp. 57-65 (In Russian).

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. Systemnyy analiz i prikladnaya informatika [System Analysis and Applied Information
Science], 2021, no. 3, pp. 40-50 (In Russian).

Tpyasl BITY Cepus3 Ne 1 2023

A. A. Prihozhy, O. N. Karasik 83

Crnucok JuTepaTypbl

1. Survey of Shortest-Path Algorithms / Madkour A. [et al]. ArXiv: 1705.02044v1 [cs. DS]
4 May 2017, 26 p.

2. Review and Performance Analysis of Shortest Path Problem Solving Algorithms / Glabowski M.
[et al] // International Journal on Advances in Software. 2014. Vol. 7, no. 1&2. P. 20-30.

3. Floyd R.W. Algorithm 97: Shortest path // Communications of the ACM. 1962. No. 5 (6). P.345.

4. Prihozhy A. A., Mattavelli M., Mlynek D. Data dependences critical path evaluation at C/C++ system
level description // International Workshop PATMOS'2003. Springer, 2003. P. 569-579.

5. Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path
Algorithm in OpenMP 3.0 // 2" International Conference on Advances in Computer Science and Engineering
(CSE 2013). Los Angeles, CA, July 1-2.2013. P. 109-112.

6. Ilpuxoxuit A. A. Ananmu3, mnpeoOpa3oBaHMEe W ONTUMH3ALUSA JUIA BBICOKOIPOU3BOAUTEIHHBIX
napajuiedbHbIX BhranciaeHnid. Munck: BHTY, 2019. 229 c.

7. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli. M. Pipeline Synthesis and Optimization from
Branched Feedback Dataflow Programs // Journal of Signal Processing Systems, Springer Nature, 2020.
Vol. 92. P. 1091-1099. URL.: https://doi.org/10.1007/s11265-020-01568-5 (accessed 29.09.2022).

8. Ilpuxoxwuit A. A., Kapacux O. H. BriBog anropuT™MoB MoucKa KpaT4allinx IMyTeil ¢ BpeMEeHHOU U
MIPOCTPAHCTBEHHOM JIOKAITBHOCTEHIO I 00paboTKu Oompmnx maHHbIX. Big Data and Advanced Analytics:
6. Hayu. cT. VIII MexayHnap. Hayd.-ipakT. KOH}., MuHCK, 11-12 mas 2022 rona. Munck: bectnpunt, 2022.
C. 56-66.

9. Ilpuxoxuit A. A. MojenupoBaHue Kd3II NPSAMOTO OTOOPaXEHHWsS M AaCCOIMATUBHBIX KJII Ha
ANTOPUTMAX IMONCKA KpaTyanmux myTel B rpade / CHCTeMHBIN aHaN3 U MpUKIIagHas napopmatuka. 2019.
Ne 4. C. 10-18. URL: https://doi.org/10.21122/2309-4923-2019-4-10-18 (nata oOpamenus: 29.01.2023).

10. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm Jour-
nal of Experimental Algorithmics (JEA). 2003. Vol. 8. P. 857-874.

11. Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache perfor-
mance // IEEE Trans. on Parallel and Distributed Systems. 2004. No. 15 (9). P. 769-782.

12. Tlpuxoxwuit A. A., Kapacux O. H. PasHoponHbiii OI0YHBIN aNropuT™M MOMCKA KpaT4allux MmyTed
MEXIy BCeMHU mapaMu BepmuH rpada // CucTeMHBI aHanu3 W npukianHas uHGopmatrka. 2017. Ne 3.
C. 68-75. URL.: https://doi.org/10.21122/2309-4923-2017-3-68-75 (marta obpamenus: 29.01.2023).

13. Kapacux O. H., [Tpuxoxuit A. A. [1oTOKOBBI OIOYHO-TIApAJUIENBHBIN aNTOPUTM TOHCKA Kpart-
yaimux nytei Ha rpade // Jloxnanst BIYUP, 2018. Ne 2. C. 77-84.

14. Tlpuxoxwuii A. A., Kapacuk O. H. Hactpoiika 6109HO-TIapaJiIeIbHOTO aTOPUTMa TIOUCKa KPaTKUX
nyTeil Ha 3G PEeKTUBHYI0 MHOTOSIAEPHYIO peanu3anuto / CUCTEMHBIN aHaIu3 U NpUKiIagHas nHPOpMaTHKa.
2022. Ne. 3. C. 57-65.

15. Mpuxoxuit A. A. OnTuMu3aius pa3MeIICHUs JaHHBIX B UEPAPXUYCCKOU MAMSITU JJIsi OJIOYHBIX
AITOPUTMOB TIOWCKa KpaTdarmux myTeit / CrucTeMHBIN aHann3 u mpukiagaas uapopmaruka. 2021, Ne, 3.
C. 40-50.

Information about the authors

Prihozhy Anatoly Alekseevich — DSc (Engineering), Professor, Professor, Department of Computer
and System Software. Belarusian National Technical University (65, Nezavisimosti ave., 220013, Minsk,
Republic of Belarus). E-mail: prihozhy@yahoo.com

Karasik Oleg Nikolayevich — PhD (Engineering), Lead Engineer, ISsoft Solutions (5, Chapaeva str.,
220034, Minsk, Republic of Belarus). E-mail: karasik.oleg.nikolaevich@gmail.com

HNudopmanus 06 apTopax

Ipuxo:xuii AHaTomii AjlekceeBHY — JOKTOP TEXHHUECKHX HayK, podeccop, mpodeccop kadenpst
MIPOTPaMMHOT0 00ecTicueHns NHPOPMAITMOHHBIX CHUCTEM W TEXHOJIOTHH. beopycckuii HannoHaTbHBINA TeX-
Huueckuii yHuBepcurter (220013, r. Munck, np. HezaBucumoctn 65, Pecmybnmuka bemapycs). E-mail:
prihozhy@yahoo.com

Kapacux Ouer HukosaeBu4 — KaHIUIAT TEXHUYECKUX HAYK, BEAYIIUN HHxKeHep. IHOCTpaHHOE TIPO-
M3BOJICTBeHHOE yHUTapHOE npeanpusatue «Mccodpt Comomensy. (220034, r. Munck, yi. Yamaesa, 5, Pec-
mybnuka bemapycs). E-mail: karasik.oleg.nikolaevich@gmail.com

Iocmynuna nocne dopabomxu 15.11.2022

Tpyabl BITY Cepuss3 Ne 1 2023

