тикоррозионные свойства при длительном воздействии агрессивной среды.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект FEMR-2021-0011).

ЛИТЕРАТУРА

1. Zhu, L. The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation (PEO) coatings on Mg alloy with fluoride addition / L. Zhu, H. Li, Q. Ma, J. Lu, Z. Li // Journal of Magnesium and Alloys. – 2021. DOI: 10.1016/j.jma.2021.10.007.

УДК 541.64:539.2

З.С. Гурина¹, И.В Мацукевич², Н.В. Кулинич², А.Н. Мурашкевич¹ ¹Белорусский государственный технологический университет, Минск ²Институт общей и неорганической химии Академии наук, Республика Беларусь *E-mail: man@belstu.by*

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ОКСИДОВ ТИТАНА И МАГНИЯ

В системе TiO₂ – MgO установлено существование трех стехиометрических соединений: Mg₂TiO₄ ($T_{пл}$ = 1760°C), MgTiO₃ ($T_{пл}$ = 1660°C), MgTi₂O₅ ($T_{пл}$ = 1660°C). Первые два плавятся с разложением, последнее – не разлагаясь [1]. Титанаты магния используют в авиационной и космической отраслях в качестве пигментов, компонентов конденсаторных материалов, фотокатализаторов [2–3]. Кроме того, композиты на основе титанатов магния проявляют активность в процессах фотодеградации органических соединений под воздействием видимого света [4]. Цель настоящей работы – получение композиционных материалов на основе оксидов титана и магния глицинцитрат-нитратным методом, исследование их физико-химических и фотокаталитических свойств.

Композиционные материалы в системе $TiO_2 - MgO$ получали вышеуказанным методом с использованием в качестве исходных компонентов метатитиновой кислоты $H_2TiO_3(ч)$, гексагидрата нитрата магния $(Mg(NO_3)_2 \cdot 6H_2O$ (ч.д.а.), лимонной кислоты $C_6H_8O_7(x.ч.)$, глицина NH_2CH_2COOH (ч.д.а.) без дополнительной очистки. На первой стадии метатитановую кислоту обрабатывали раствором пероксида водорода в щелочной среде (раствор аммиака) для превращения в растворимую форму согласно реакции:

 $H_2TiO_3 + x H_2O_2 + (2-x) OH^- \rightarrow [(TiO_2)_x (H_2O)_{4-x}]_{2-x} + (3/2x - 2) H_2O.$

Полученный раствор смешивали с определенным количеством глицина и лимонной кислоты при мольном соотношении углерод/азот (C/N), равном 0,25. Растворы упаривали при постоянном перемешива-

нии на магнитной мешалке IKA C-MAG HS-7 при температуре около 200°C. В ходе испарения растворы загустевали и превращались в гель, который вначале прогревали в муфельной лабораторной печи при температуре 350°C в течение 5 ч, а затем еще при температурах 650 С и 750 С в течение 5 ч с получением порошков белого цвета.

Идентификацию образцов (табл. 1) проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Дрон-3, Си-К_α-излучение), микроструктуру порошков исследовали при помощи растрового электронного микроскопа JSM 7600F (JEOL, Япония) с пространственным разрешением около 1 нм. Размеры кристаллитов (t, нм) оценивали по уширениям рентгеновских дифракционных пиков с помощью формулы Дебая-Шеррера. Насыпную плотность измеряли в соответствии с ГОСТ 19440-94. Адсорбционные свойства образцов оценивали объемным методом на анализаторе площади поверхности и пористости ASAP 2020 MP (Micromeritics, США). Исследование фотокаталитической активности проводилось на примере деградации раствора красителя прямого ярко-голубого с начальной концентрацией 1,7.10⁻⁵ моль/л. Изменение концентрации красителя контролировали в течение 30 мин с интервалом 5-10 мин фотоколориметрически при длине волны $\lambda = 590$ нм с предварительным отделением порошка композита центрифугированием. Степень фотодеградации (разрушения) красителя (ф, %) под действием УФ-излучения и катализатора рассчитывали по формуле $\varphi = (1 - D_n/D_o) \cdot 100 \%$, где D_o – оптическая плотность исходного раствора красителя; $D_{\rm n}$ – оптическая плотность раствора красителя после УФ-облучения и отделения от катализатора. Расчет константы скорости реакций разложения красителя $(k_1, \text{ мин}^{-1})$ проводили в соответствии с моделью для реакций псевдопервого порядка по формуле ln 100/(100 – ϕ) = $k_1 \cdot \tau$, где τ – время облучения, ϕ ,% - по истечении времени τ.

		I						
Образец	Брутто-формула	Фазовый состав	S _{уд,} 2/г	ρ _{нас.} , г/см ³	<i>t</i> , нм			
TA1	TiO ₂ ·MgO	MgTiO ₃ , TiO ₂ (пр.)	24	0,17	43			
TA4	TiO ₂ ·2MgO	Mg₂TiO ₄ , TiO ₂ (пр.)	25	0,07	13			
TA5	TiO ₂ ·3MgO	Mg ₂ TiO ₄ , MgO, TiO ₂	_	0,06	_*			
TA6	TiO ₂ ·4MgO	TiO ₂ , Mg ₂ TiO ₄ , MgO	-	0,07	_*			
TA7	2TiO ₂ ·MgO	MgTi₂O 5, TiO ₂ (пр.)	47	0,19	31			
TA8	2TiO ₂ ·3MgO	MgTi ₂ O ₅ , TiO ₂ , MgO	-	0,12	_*			
TA9	3TiO ₂ ·MgO	MgTi ₂ O ₅ , TiO ₂	_	0,57	_*			
TA10	3TiO ₂ ·2MgO	MgTi ₂ O ₅ , MgTiO ₃ , TiO ₂	_	0,16	55			
TA11	3TiO ₂ ·4MgO	MgTiO ₃ , Mg ₂ TiO ₄	_	0,13	46			
Примечание: выделенные в таблице формулы соответствуют фазам, содержание которых								
превышает 92 мс. %;* – композит TiO2–MgO содержит одну или несколько слабоокри-								

Таблица 1 – Перечень композитов TiO₂–MgO, их S_{уд}, насыпная плотность р_{нас.} и размеры кристаллитов *t* после термообработки при 650°C

Как видно на рис. 1 *а*, титанат магния MgTiO₃ имеют ячеистую микроструктуру с развитой системой пор. Рентгенограммы композитов TiO₂–MgO, полученных глицин-цитрат-нитратный метод из водных растворов, после финишной термообработки свидетельствуют о том, что основными компонентами являются фазы MgTiO₃, MgTi₂O₅, для некоторых образцов характерно присутствие примесной фазы TiO₂ (рис. 1 δ).

 * – фаза MgTi₂O₅ (JCPDS: Card № 00-035-0792), индексы Миллера указаны для фазы MgTiO₃ (JCPDS: Card № 00-006-0494)
Рисунок 1 – Микрофотография титаната магния MgTiO₃ (*a*) и рентгеновские дифрактограммы (б) образцов TiO₂·MgO (1), 2TiO₂·MgO (2), 3TiO₂·MgO (3), 3TiO₂·2MgO (4), 3TiO₂·4MgO (5) после термообработки при 650 С

Значения насыпной плотности заметно увеличивались с ростом содержания TiO_2 в составе композитов (табл. 1), при этом минимальные значения характерны для образцов $TiO_2 \cdot xMgO$ (x = 2, 3, 4) и составляют 0,06 – 0,07 г/см³. Значения удельной поверхности и среднего диаметра пор некоторых исследованных образцов зависят от состава и изменяются в диапазоне 27 – 47 м²/г и 8 – 20 нм соответственно.

Исследование деградации прямого ярко-голубого в присутствии копозитов $TiO_2 - MgO$ показало, что полученные образцы обладают фотокаталитической активностью на достаточно высоком уровне (табл. 2). После финишной обработки при температуре 650 С максимальная степень фотодеградации была достигнута в случае применения образца $TiO_2 \cdot 4MgO$, включающего фазы TiO_2 , Mg_2TiO_4 , MgO. В целом, для большинства исследованных образцов характерно увеличение фотокаталитической активности с увеличением температуры обработки, что может быть связано с фазовыми превращениями компонентов и увеличением их степени кристалличности.

по истечении зо мин							
Образец	Финишная термообработка, С						
	650		750				
	φ, %	k_1 , мин ⁻¹	φ, %	k_1 , мин ⁻¹			
TA1	62,6	0,0281	69,5	0,0396			
TA4	55,3	0,0222	66,9	0,0369			
TA5	60,8	0,0278	63,0	0,0331			
TA6	86,5	0,0670	65,2	0,0352			
TA7	69,9	0,0391	69,1	0,0392			
TA8	53,6	0,0259	63,8	0,0338			
TA9	26,6	0,0075	73,1	0,0437			
TA10	20,2	0,0048	70,9	0,0412			
TA11	54,0	0,0225	70,1	0,0403			
Примечание: номера образцов соответствуют номерам, приведенным в табл. 1							

Таблица 2 – Степени фотодеградации красителя прямого ярко-голубого под действием УФ-излучения и константы скорости реакций разложения по истечении 30 мин

Работа выполнена при поддержке БРФФИ (грант № X22CPГ-010) в рамках международного белорусско-сербского научно-технического проекта «Разработка и применение для защиты окружающей среды наноструктурных материалов на основе титанатов магния».

ЛИТЕРАТУРА

1. Ma L.-Ch. Metastable Phases of MgO - TiO $_2$ Solid Solutions / L.-Ch. Ma // Michigan: Western Michigan University Kalamasso. 2002. - 101 p.

2. Li D., Wanga L., Xuea D. Stearic acid gel derived MgTiO₃ nanoparticles: A low temperature intermediate phase of Mg_2TiO_4 // J. Alloys Compd. 2010. – Vol.492. P. 564–569.

3. Cheng L., Liu P., Qu Sh.-X., Cheng L., Zhang H.W. Microwave dielectric properties of Mg_2TiO_4 ceramics synthesized via high energy ball milling method // J. Alloys Compd. 2015. – Vol. 623. – P. 238–242.

4. Selvamani T., Anandan S., Asiri A. M., Maruthamuthu P., Ashokkumar M. Preparation of $MgTi_2O_5$ nanoparticles for sonophotocatalytic degradation of triphenylmethane dyes // Ultrason. Sonochem. 2021. – Vol. 75. – P. 105585.