tivity of ruthenium (II) polypyridyl complexes. *Eur. J. Med. Chem.* 45 564–571 View full aims & scope.

4. Pandrala M., Li F., Feterl M., Mulyana Y., Warner J.M., Wallace L., Keene F.R., Grant J. Collins. 2013 Chloride-containing ruthenium(II) and iridium(III) complexes as antimicrobial agents. *Dalton Trans.* 42 4686–4694 Web of Science, Scopus.

5. Suss-Fink, Arene G. 2010 Ruthenium complexes as anticancer agents. J. Chem. Soc., Dalton Trans. 39 1673–1688.

УДК 544.227

А.В. Поспелов, А.А. Касач, И.И. Курило БГТУ (г. Минск, Республика Беларусь)

СТРУКТУРА ЗАЩИТНОГО ПОКРЫТИЯ, СФОРМИРОВАННОГО НА ПОВЕРХНОСТИ ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ СПЛАВАХ МАГНИЯ МЕТОДОМ ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ

В последние годы магниевые сплавы привлекают значительное внимание в связи с возможностью использования их в качестве ортопедических имплантатов [1]. Это связано с их уникальным сочетанием механических свойств и биосовместимости. Магниевые сплавы имеют оптимальное соотношение прочности и веса, что делает их альтернативой традиционным материалам для имплантатов, таким как титан и нержавеющая сталь. Необходимо отметить, что магний и его сплавы используются для изготовления биорезорбируемых имплантатов, т. е. происходит разрушение имплантата посредством клеточных и ферментативных реакций. Кроме того, было доказано, что магний способствует формированию новой костной ткани [2].

Однако существуют проблемы, препятствующие широкому использованию магниевых сплавов в качестве ортопедических имплантатов. Одной из основных проблем является высокая скорость коррозии магниевых сплавов в средах организма человека, что приводит к образованию гидроксида магния и газообразного водорода. В физиологической среде из-за присутствия высоких концентраций хлоридионов наряду с гидроксидом образуется хлорид магния, гидролиз которого приводит к локальному повышению рН в приповерхностной области и способствует увеличению скорости коррозии магниевых имплантатов [3].

Для решения проблемы быстрой коррозии магниевых сплавов в физиологической среде используют либо различные методы модификации поверхности, либо изменение микроструктуры сплава путем добавления легирующих элементов. Добавление в магний легирующих редкоземельных элементов (РЗЭ), например, иттрия и неодима (сплав WE43), улучшает его механические свойства и повышает коррозионную устойчивость [4].

Эффективным способом модификации поверхности сплавов магния является плазменное электролитическое оксидирование (ПЭО) [5]. Покрытия, полученные с помощью ПЭО, обычно состоят из плотного и однородного оксидного слоя с наноструктурированной поверхностью, который обеспечивает защиту от коррозии. Химический состав, толщина покрытий, а также их функциональные свойства могут быть изменены варьированием параметров процесса ПЭО, таких как плотность электрического тока и концентрация электролита.

Цель работы – исследование структуры и элементного состава защитного покрытия, сформированного на поверхности сплава магния WE43 методом ПЭО.

В качестве объекта исследования использовали магниевый сплав WE43. Перед проведением плазменно-электролитического оксидирования образцы шлифовали наждачной бумагой в среде этилового спирта, после чего подвергали ультразвуковой очистке в течение 5 мин.

ПЭО предварительно подготовленных образцов сплава WE43 проводили в электролите, содержащем, г/дм³: Na₄P₂O₇ – 10; NaOH – 1. ПЭО проводили в импульсном режиме при скважности импульсов 2 и частоте 2 Гц. Анодная плотность тока импульса составляла 30 А/дм², длительность обработки – 450 с. Материалом катода служила нержавеющая сталь.

Структуру и элементный состав поверхности исследуемых образцов сплава WE43 изучали с помощью электронного микроскопа JEOL JSM-5610 LV (Jeol Ltd. Япония), оснащенного системой энергодисперсионного рентгеновского спектрального анализа JED-2201 (EDX).

На рисунке 1 представлены СЭМ изображения поверхности образца сплава магния WE43 до (рисунок 1a) и после ПЭО (рисунок 1δ), а также изображение поперечного шлифа образца с ПЭО покрытием (рисунок 1b).

Как видно из рисунка 1*a* сплав WE43 характеризуется сетчатой микроструктурой, выраженной несколькими фазами. Основной фазой (α -фазой) является магний с низким процентным содержанием легирующих элементов (рисунок 1*a*, область 1). β -фаза представляет собой менее однородную фазу с более высокой концентрацией РЗЭ.

Рисунок 1 – СЭМ изображение поверхности образца сплава WE43 до ПЭО (а), после ПЭО (б), поперечного шлифа образца WE43 с ПЭО покрытием (в).

Кроме того, на рисунке 1*a* и 1*в* наблюдаются контрастные области, которые относятся к интерметаллическим частицам (ИМЧ). Состав ИМЧ представлен соединениями магния с редкоземельными элементами (Mg-P3Э), а также фазой циркония. Данные точечного EDX анализа указанных на рисунке 1 областей приведены в таблице 1.

На рисунке 16 представлено СЭМ изображение поверхности сплава WE43 после ПЭО. Как видно из полученной микрофотографии, при анодной плотности тока 30 А/дм² в течение 450 с на поверхности магниевого сплава формируется покрытие, характеризующееся пористой структурой с взаимосвязанными порами различных размеров и форм, что, вероятно, обусловлено повышенным газообразованием в процессе ПЭО.

Как видно из представленного СЭМ изображения поперечного шлифа образца WE43 с ПЭО (рисунок 1*в*), толщина сформированного покрытия составляет 15-20 мкм.

Образец	Элементный состав, мас.%							
и область	Mg	Y	Zr	Nd	Gd	Dy	0	Р
WE43	91.0	4.8	0.7	3.0	0.3	0.2	_	_
WE43–ПЭО	44.4	3.6	_	1.2	0.1	0.1	37.2	13.4
1	100.0	_	_	_	_	_	_	_
2	94.2	3.2	_	2.6	_	_	_	_
3	35.4	_	64.6	_	_	_	_	_
4	78.2	2.3	_	16.9	0.4	2.2	_	_
5	48.7	_	_	_	_	_	42.6	8.7
6	48.9	2.8	_	7.7	0.6	0.8	35.2	4.0
7	84.6	_	_	13.2	2.2	_	_	_
8	46.6	5.0	31.7	14.4	1.9	0.4	_	_
9	78.7	3.6	_	16.2	1.5	_	_	_
10	96.7	_	_	3.3	_	_	_	_
11	84.0	3.6	_	11.1	1.3	—	—	—

Таблица 1 – Данные EDX анализа поверхности образца сплава WE43

Результаты энергодисперсионного рентгеновского спектрального анализа показали, что полученное ПЭО покрытие преимущественно состоит из Mg, O и P, что свидетельствует о формировании аноднооксидного покрытия, включающего оксиды и фосфаты магния, улучшающих его биосовместимость. Кроме того, в состав ПЭО покрытия входит незначительное количество легирующих элементов: Y (до 3.6 мас.%), Nd (до 1.2 мас.%), Gd (до 0.1 мас.%), Dy (до 0.1 мас.%).

Наличие в покрытии легирующих элементов, вероятно, обусловлено тем, что ИМЧ входящие в структуру сплава WE43 участвуют в формировании ПЭО покрытия, образуя обогащенные РЗЭ области.

Таким образом, проведенные исследования показали, что ПЭО в импульсном режиме в пирофосфатном электролите позволяет сформировать на поверхности сплавов магния биосовместимые фосфатнооксидные покрытия.

ЛИТЕРАТУРА

1. Junxiu, C. Mechanical properties of magnesium alloys for medical application: A review / C. Junxiu, T. Lili, Y. Xiaoming, P.E. Iniobong, I. Muhammad, Y. Ke // Journal of the Mechanical Behavior of Biomedical Materials. – 2018. – Vol. 87. – P. 68–79.

2. Yoshizawa, S. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation / S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir // Acta Biomater. -2014. - Vol. 10 (6). - P. 2834–2842.

3. Gonzalez, J. Magnesium degradation under physiological conditions - Best practice / J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer, F. Feyerabend // Bioact Mater. – 2018. – Vol. 3 (2). – P. 174–185.

4. Dvorsky, D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering / D. Dvorsky, J. Kubasek, M. Roudnicka, F. Prusa, D. Necas, P. Minarik, J. Straska, D. Vojtech // Journal of Magnesium and Alloys. – 2021. – Vol. 9 (9). – P. 1349–1362.

5. Blawert, C. Plasma Electrolytic Oxidation/micro-Arc Oxidation of Magnesium and its Alloys / C. Blawert, S.P. Sah, N. Scharnagl, M.B. Kannan // Surface Modification of Magnesium and its Alloys for Biomedical Applications (Woodhead Publishing). – 2015. – P. 193–234.