А.Ю. Куренкова, А.В. Журенок, Е.Ю. Герасимов, А.А. Сараев, Е.А. Козлова ИК СО РАН, Новосибирск, Россия

ФОТОКАТАЛИЗАТОРЫ НА ОСНОВЕ g-C₃N₄ Для восстановления со₂: влияние условий синтеза на активность

В связи с растущей концентрацией парниковых газов в атмосфере их утилизации уделяется особое внимание. Основным компонентом является CO_2 , который образуется при сжигании ископаемого топлива. Другими важными проблемами являются растущее потребление энергии и истощение запасов ископаемого топлива. Таким образом, перевод CO_2 в синтетическое топливо решил бы сразу несколько проблем. Такая возможность предоставляется при фотокаталитическом процессе восстановления CO_2 , продуктами которого являются CH_4 , CO, CH_3OH и др.

Графитоподобный нитрид углерода $g-C_3N_4$ имеет достаточно узкую ширину запрещенной зоны, что делает его перспективным фотокатализатором для процессов при облучении видимым светом. Низкая стоимость, простота приготовления и отсутствие токсичности делают $g-C_3N_4$ привлекательным фотокатализатором с практической точки зрения. Платина широко используется в качестве сокатализатора из-за ее высокой работы выхода электронов, что значительно улучшает разделение зарядов.

В данной работе была приготовлена серия фотокатализаторов на основе g-C₃N₄, модифицированных частицами Pt. На первом этапе варьировали температуру прокаливания меламина в диапазоне 500–600 °C. После этого частицы Pt наносились на поверхность g-C₃N₄ двумя способами: фотохимическим восстановлением или методом фотоосаждения (PD) и восстановлением NaBH4 или химическим осаждением (CD). Полученные фотокатализаторы обозначали: X% Pt(PD или CD)/g-C₃N₄ T, где X – массовое содержание Pt, PD или CD – способ нанесения Pt, T – температура прокаливания меламина. Фотокатализаторы охарактеризованы различными методами (РФЭС, РФА, ПЭМ BP, спектроскопия рентгеновского поглощения, спектроскопия диффузного отражения) и исследованы в реакции восстановления CO₂ (CO₂ RR) под действием видимого света. Свойства образцов приведены в таблице 1 и на рис. 1.

T, ℃	Sejt,	Объём пор, см ³ г ⁻¹	Eg, əB	[N]/[C]
500	9.4	0.06	2.82	1.31
600	26.4	0.14	2.75	1.37

Таблица 1 – Свойства синтезированных образцов g-C₃N₄.

S_{БЭТ} – удельная площадь поверхности, измеренная по методу БЭТ

Е_g – ширина запрещенной зоны

С увеличением температуры прокаливания меламина, увеличивается площадь поверхности и объем пор получаемого g-C₃N₄, при этом ширина запрещенной зоны и отношение [N]/[C] практически не изменяется.

Рисунок 1 – Спектры диффузного отражения g-C₃N₄ 500 и g-C₃N₄ 600 (a), график в координатах Таука (б), РФЭ спектры Pt (в) и спектры XANES L₃-края поглощения Pt (г) в катализаторах 1% Pt/g-C₃N₄; изображения ПЭМ ВР катализаторов 1% Pt/g-C₃N₄.

Состояние платины зависит от метода её осаждения из раствора H_2PtCl_6 : при использовании метода фотоосаждения, платина восстанавливается только до состояния Pt^{+2} и находится в форме оксида PtO, в то время как использование $NaBH_4$ позволяет провести полное восстановление платины до металлического состояния.

Активность фотокатализаторов была исследована в реакции восстановления CO₂ под действием излучения светодиода. Было использовано три светодиода с максимумами длины волны на 397, 427 и

452 нм. Фотокаталитическую реакцию проводили в статическом реакторе объемом 170 мл при комнатной температуре. Навеску образца (30 мг) наносили на стеклянную подложку (8 см²) и выдерживали 30 мин под излучением диода (380 нм) на воздухе для удаления органических примесей с поверхности фотокатализатора. Затем образец помещали в реактор, содержащий 1 мл деионизованной воды. Реактор продували потоком CO_2 (99.94 %) в течение 60 мин. Общее давление в реакторе равнялось 1 атм. После этого реактор облучали светодиодом. Активность измеряли на протяжении 24 ч, продукты анализировали на газовом хроматографе («Хромос», Россия), оснащенном пламенно-ионизационным детектором и детектором по теплопроводности. Результаты измерения активности фотокатализаторов (397 нм) представлены на рис. 2.

Рисунок 2 – Скорость образования CH4 (а, г), CO (б, д) и общая скорость восстановления CO₂ (в, е) в зависимости от температуры прокаливания меламина, способа нанесения и содержания платины

Общая скорость восстановления CO2 рассчитывалась по формуле: $W(CO_2) = [8n(CH_4) + 2n(CO)]/(t \cdot m)$, где $n(CH_4)$ и n(CO) — количество вещества CH₄ и CO (мкмоль), 2 и 8 — коэффициенты, определенные с учетом электронного баланса, t — продолжительность реакции (ч), m — масса фотокатализатора (г).

Фотокатализаторы, проявившие наиболее высокую активность, были протестированы под действием более длинноволнового излучения (427 и 452 нм). Результаты представлены в таблице 2.

Катализатор	Длина волны	Скорость	Селективность
	источника	восстановления СО ₂ ,	восстановления
	излучения, нм	мкмоль ч ⁻¹ г ⁻¹	CO ₂ , %
0.5% Pt (CD)/g-	397	13.2	51.5
	427	6.2	80.1
C31N4 000	452	1.5	94.8
0.50/ Dt (DD)/~	397	4.0	73.3
0.5% Pt (PD)/g-	427	1.8	85.6
C31N4 000	452	0.6	87.2

Таблица 2 – Активность и селективность наиболее активных фотокатализаторов.

В данной работе исследованы условия синтеза фотокатализаторов на основе g-C₃N₄, модифицированного частицами Pt или PtO на активность и селективность процесса фотокаталитического восстановления СО₂. Показано, что определяющими факторами для достижения высокой эффективности являются площадь поверхности g-C₃N₄ и степень окисления металла. Платина в металлическом состоянии способствует повышению активности фотокатализатора, но высокая селективность достигается только при длине волны 427 нм и выше. Оксид платины является более селективным сокатализатором в отношении фотокаталитического восстановления СО₂, но скорость реакции в этом случае невелика. Максимальная скорость восстановления СО₂, достигнутая на фотокатализаторе 0.5 % Pt(CD)/g-C₃N₄, составляет 13,2 мкмоль ч⁻¹ Γ^{-1} ($\lambda = 397$ нм) при селективности восстановления СО2, равной 51,5 %. Максимальная селективность составляет 94,8 % и достигается на том же фотокатализаторе 0.5 % Pt(CD)/g-C₃N₄ 600 при облучении с длиной волны 450 нм [1].

Работа выполнена при финансовой поддержке РНФ, проект № 21-73-10235.

ЛИТЕРАТУРА

1. Saraev, A.S. Selectivity Control of CO_2 Reduction over Pt/g-C₃N₄ Photocatalysts under Visible Light / A.S. Saraev, A.Y. Kurenkova, A.V. Zhurenok, E.Y. Gerasimov, E.A. Kozlova // Catalysts. – 2023. – 13, 2. – C. 273:1-14.