кривым титрования низкомолекулярных аминов. Начало кривых соответствует титрованию первичных и концевых групп, средний участок кривых соответствует титрованию иминогрупп [1].

Представляет интерес тот факт, что кривые потенциометрического титрования, полученные для водного раствора ПЭИ и в присутствии растворов КС1 различных концентраций, пересекаются в одной точке (рис. 3). Анализируя полученные данные, можно предположить, что в исследованной системе возможно комплексообразование.

ЛИТЕРАТУРА

1. Гембицкий П. А., Жук Д. С., Каргин В. А. Полиэтиленимин.— М., 1971.— 201 с.

2. Гликман С. А. Введение в физическую химию высокополимеров. Саратов, 1959. 187 с.

3. Тагер А. А. Растворы высокомолекулярных соединений.—М., 1951.— 156 с.

4. Бреслер С. Е. Полимерные электролиты // Успехи химии и технологии полимеров. — М., 1957. — 296 с.

УДК 661.635.5

Н. В. Гребенько, А. В. Маргулец, В. В. Печковский, Л. С. Ещенко МИКРОПОРИСТЫЕ АЛЮМОФОСФАТЫ СО СВОЙСТВАМИ ЦЕОЛИТОВ

Важным направлением работ в области синтеза новых адсорбентов и катализаторов является получение цеолитных структур на основе неорганических фосфатов. Согласно литературным данным [1], путем изоморфного замещения кремния на фосфор были получены кристаллические алюмосиликофосфаты со структурой целиолитов типа A, L, P. В работе [2] показана возможность образования кристаллических алюмофосфатов со структурой цеолитов типа эрионита, содалита, а также ряда структур, не имеющих аналогов среди известных молекулярных сит. Однако многие вопросы, касающиеся получения и свойств этих соединений, изучены недостаточно.

Целью данного исследования явилось освещение результатов изучения условий образования микропористых структур на основе фосфата алюминия, а также их адсорбционной способности и термической стабильности.

Синтез кристаллических фосфатов осуществляли пу-

Таблица 1

Условии синтела и характеристика кристаллического продукта

a diante	Cott	Условня кристалли- зации		Характеристика кристаллического продукта						
	1601	Тил реагента		л 1	Состав цеоли- та, массовая доля, %			Тип кристалли-	бцион- бъем, ^а м ^а /кг	
	P.O.		Т, К		Al ₂ O ₃	P20,	NH3	ческой структуры	Адсорі ный ot ×10-	
1	1,0	мочевина	200	30	25,4	37,6	5,3	цеолит типа А	0,27	
-	0,6	этилацетат мочевина этилацетат	160	78	38,9	28,4	0,7	не идент ифици - рован	0,21	
3	1,3	мочевина этилацетат	130	30	24,3	48,3	13,9	не идентифици-	0,09	
4	1,2	бутиланилин третичный	250	100	35,1	4 <mark>6,</mark> 6	0,9	шабазит	0,22	
5	0,9	этилендиа-	200	30	37,9	44,9	2,8	не идентифици- рован	0,16	
6	1,1	триэтиламин	200	27	37,1	46,7	1,7	не идентифици-	0,25	
7	1,2	циклогек- силамин	220	30	36,4	46,8	0,8	эрнонит	0,29	

тем гидротермальной обработки реакционных гелей, полученных взаимодействием активного золя гидроксида алюминия с концентрированной фосфорной кислотой [3]. Кристаллизацию гидрогеля проводили при температуре T=303-523 К в присутствии органических оснований или мочевины, выполняющих структурно-направляющую роль в процессе синтеза. Кристаллический осадок отделяли от маточного раствора, промывали дистиллированной водой и сушили до достижения постоянной массы. Полученные образцы подвергали термообработке при температуре 523-873 К с целью удаления органических молекул из объема микроструктурных пор. Идентификацию алюмофосфатов осуществляли

Идентификацию алюмофосфатов осуществляли рентгенографическим методом на установке ДРОН-3 и монохроматизированном медном излучении. Для исследуемых образцов рассчитывали межплоскостные расстояния и определяли интенсивность рефлексов. Термические превращения микропористых фосфатов алюминия изучали с помощью дериватографа МОМ-102 системы «Паулик»; навеска образца составляла 0,3— 0,5 г; скорость нагрева 5 К/мин. Адсорбция паров воды исследовалась весовым методом на вакуумной адсорбционной установке с кварцевыми весами Мак-Бена.

Как видно из табл. 1, органические основания и мочевина, применяемые в процессе синтеза, определяют направление кристаллизации алюмофосфатного геля, что приводит к воспроизводимому формированию различных кристаллических структур с развитой системой микропор. Тип структуры исследуемых образцов обусловлен главным образом природой и свойствами структурообразующих реагентов.

В ряде случаев идентификация микропористых фосфатов алюминия как по структуре, так и по способности к поглощению газов и паров подтверждает их близость к эталонным образцам известных цеолитов. Например, в геле, содержащем циклогексиламин, образуется кристаллический алюмофосфат со структурой, близкой к эриониту (табл. 1, образец 7) [4]. При использовании в процессе кристаллизации третичного бутиланилина развитие структуры соответствует образованию шабазита (табл. 1, образец 4). Характерно, что проведение

Таблица 2

-	Образе		Образец 3								
<i>d</i> , нм	1, %	<i>d</i> , нм	1, %	<i>d</i> , нм	1, %	<i>d</i> , нм	1, %	<i>d</i> , нм	1, %	<i>d</i> , нм	1. %
10,8 8,83 7,85 6,66 5,99 5,87 5,42 4,86 4,66 4,66 4,66 4,16 3,75	100 10 73 15 43 60 10 7 16 28 15 7 9	3,60 3,42 3,03 2,92 2,63 2,54 2,20 2,41 2,29 2,25 2,16 2,11 2,04	42 27 3 7 8 12 4 11 7 5 3 3 9	1,96 1,87 1,81 1,75 1,73 1,59	3 5 3 5 3 5 3	7,8 6,66 5,92 4,66 4,43 4,08 3,75 3,49 2,99 2,63 2,79 2,63 2,49	20 100 90 68 24 13 18 19 56 12 45 7	2,44 2,32 2,25 2,16 2,10 2,06 2,02 1,97 1,82 1,80 1,76	12 8 7 5 13 9 10 7 4 6 3 3	1,70 1, <u>64</u> 1,56	353

Данные рентгенофазового анализа для образцов 2, 3

гиднотермальной обработки исходного гидрогеля в присутетнии мочевниы и этилацетата способствует формироплино ряда микропористых структур, отличающихся ная по кимическому составу, так и по свойствам. Coгласно репттенофазовому анализу, образец 1 имеет структуру, близкую к цеолиту типа А, а его адсорбционная способность и молекулярно-ситовое действие определяются размером пор, равным 0,4 нм. Следует замечто образованию структуры типа А в THTD. системе Аl2O3-P2O5-CON2H4-C4H8O2 предшествует кристаллизация микропористых фаз, отвечающих аммонийным и основным алюмофосфатам (табл. 1, образцы 2, 3).

В табл. 2 приведены межплоскостные расстояния d и интенсивности пиков I дифрактограмм, соответствующих образцам 2, 3 (см. табл. 1).

Согласно кривым дифференциально-термического анализа (ДТА), для образцов 1, 2, 4, 6, 7 (рис. 1) нали-

10

чне экзоэффектов, соответствующих перестройке их кристаллических структур, наблюдается в области температур 1093—1313 К. Данные рентгенофазового анализа подтверждают сохранность кристаллических структур этих образцов до температуры экзоэффектов. Изменения на дифрактограммах связаны лишь с некоторым снижением интенсивностей пиков, что, по-видимому, обусловлено их частичной аморфизацией. Для образцов 3, 5

Рис. 2. Адсорбционные свойства микропористых алюмофосфатов:

а-изотермы адсорбции паров воды при 293 К; б-при 323 К (1, 7) и 373 К (1', 7'); в-изобары адсорбции паров воды исследуемых образцов и цеолитов NaA (A) и NaX (X); г-изотермы адсорбции паров воды при 293 К для микропористых алюмофосфатов; 3*-5*десорбционные ветви изотерм. Номера кривых приведены согласно табл. 1; а-адсорбция; p/ps - относительное давление экзоэффекты на кривых ДТА соответствуют более низкой температурной области, что свидетельствует об их недостаточной устойчивости к действию высоких температур. Эндотермические эффекты, отраженные на кривых ДТА, связаны с процессами дегидратации, протекающими в интервале температур 413—483 К, а также с разложением и удалением органических соединений из объема микроструктурных пор в интервале 673—873 К.

Способность микропористых фосфатов к поглошению паров воды изучалась по изотермам адсорбции, измеренным при 293, 323 и 373 К. При 593 К были сняты и десорбционные кривые. Как видно из рис. 2, а, изотермы алсорбции паров воды имеют круто поднимающиеся участки, характерные для микропористых адсорбентов. Адсорбционные объемы исследуемых образцов имеют значения порядка (0,09÷0,30) · 10⁻³ м³/кг. С повышением температуры адсорбции до 323 и 373 К начальные участки изотерм поднимаются менее круто, а предельные величины адсорбции заметно падают (рис. 2, б). Однако, согласно изобарам адсорбции паров воды (рис. 2, в). значения величин адсорбции при повышенных температурах для образцов 1, 6, 7 значительно больше аналогичных значений, полученных для цеолитов NaA и NaX, что говорит о возможности применения этих соединений в высокотемпературных адсорбционных и каталитических процессах.

Необходимо также заметить, что для образцов 3, 4, 6 изотермы адсорбции, полученные при 293 К, не совпадают с десорбционной кривой (рис. 2 г), т. е. имеет место необратимость адсорбции. При более низких относительных давлениях изотермы исследуемых образцов обратимы и характеризуются гистерезисом в области давлений, соответствующих капиллярной конденсации. Данное обстоятельство свидетельствует об удалении из образцов в процессе нагревания и вакуумирования не только адсорбированной воды, но и некоторого количества структурной воды. Из анализа повторных изотерм следует, что структурная вода восстанавливается только при высоких относительных давлениях, близких к насыщению.

ЛИТЕРАТУРА

1. Flanigen E. M., Grose R. M. Phosphorus substitution in zeolile Framework // Molec. Sieve Zeolites. — 1971. — Vol. 101. — P. 76 — 101.

2. Wilson St. T., Lok B. M. Aluminophosphate molecular sieves: a new class of microporous crystallin inorganic solids // J. Amer. Chem. Soc.— 1982.— Vol. 104.— P, 1146—1147.

3. Гребенько Н. В., Ещенко Л. С., Печковский В. В. Синтез и исследование пористых алюмофосфатов // Журн. неорган. химии.— 1976.— Т. 22, № 9.— С. 2358—2362. 4. Брек Д. Цеолитовые молекулярные сита.— М., 1976.— 252 с.

УДК 541.13

В. И. Асташко, В. В. Романовский

ОКИСЛЕНИЕ ИОДИДА В ЩЕЛОЧНЫХ РАСТВОРАХ

Существование ряда возможных электродных реакций окисления иодида до иодата в щелочных растворах обусловливает значительную сложность рассматриваемого процесса. Согласно данным работы [1], окислительную диаграмму Латимера в интересующей нас области потенциалов можно представить в виде схемы

Кроме того, в указанном интервале потенциалов окислительно-восстановительные процессы осложняются адсорбцией кислорода и наличием большого количества промежуточных химических стадий и продуктов, образующихся в результате многоступенчатого диспропорционирования иода [1-6]. Последнее может существенно влиять на адсорбционные и электрохимические свойства электродов, направление и скорость электродных реакций.

Учитывая специфические свойства системы, следует отметить, что особый интерес представляет изучение влияния рН и состава раствора на характер и особенности окислительно-восстановительных процессов в иодидных растворах в широкой области потенциалов.

3. Зак. 596