М. Т. Мельник, Л. К. Ушакова, Л. Г. Ходский

СИНТЕЗ И ИССЛЕДОВАНИЕ НЕКОТОРЫХ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ СТЕКОЛ СИСТЕМЫ $Me_2O-B_2O_3-TiO_2-SiO_2$

К высоколетучим и токсичным материалам, традиционно присутствующим в большинстве эмалей, относятся фтористые соединения. Поэтому актуальны исследования, направленные на выявление возможности получения бесфтористых стекол и эмалей.

В настоящей работе изложены результаты изучения стеклообразования и зависимости некоторых физико-химических свойств от состава стекол системы Me_2O — B_2O_3 — TiO_2 — SiO_2 . Изучены следующие составы (моляр-

ная доля):

a) $x B_2 O_3 \cdot y TiO_2 \cdot z SiO_2 \cdot 10,5 Na_2 O \cdot 6,5 K_2 O \cdot 2 Li_2 O;$ 6) $x Na_2 \cdot y K_2 O \cdot z B_2 O_3 \cdot 2,5 Li_2 O \cdot 15 TiO_2 \cdot 50 SiO_2.$

Стекла варили в электрической печи с силитовыми нагревателями при температуре 1623 К с выдержкой 15 мин. Использовали реактивы квалификации «хч». Определяя область стеклообразования, учитывали составы, хорошо проварившиеся при указанной температуре и не закристаллизовавшиеся при естественном охлаждении.

Установлено, что прозрачные стекла образуются при следующей молярной доле компонентов: а) 10-35% B_2O_3 , 5-25% TiO_2 , 35-60% SiO_2 ; б) 5-15% Na_2O , 5-15% K_2O , 10,0-22,5% B_2O_3 . Составы с высокой молярной долей TiO_2 x_{TiO_2} (более 20%) имеют темную окраску. В составе а) склонность к кристаллизации стекол понижается с увеличением $n=Me_2O/TiO_2$. Если n=1, стекла кристаллизуются уже при выработке; если n=1,2, они теряют прозрачность только после термообработки. Стекла устойчивы к кристаллизации при $n\approx 2$. При частичном замещении Na_2O на K_2O (состав б)) склонность стекол к кристаллизации зависит от молярной доли B_2O_3 $x_{B_2O_3}$. Составы, содержащие менее 15% B_2O_3 , начинают кристаллизоваться при выработке, только если молярная доля K_2O достигает 15%. Когда система содержит более 15% B_2O_3 , кристаллизация при выработке наблюдается в системе, включающей 7% K_2O . По-

видимому, B_2O_3 и K_2O , снижая вязкость исследуемых стекол, способствуют росту кристаллов. Следовательно, в базовые составы стекол, на основе которых предполагается получить эмали, вводить более 7% K_2O нецелесо-

образно. Исследование зависимости физико-химических свойств данных стекол от состава показало, что их температурный коэффициент линейного расширения (ТКЛР) изменяется от $60 \cdot 10^{-7}$ до $109 \cdot 10^{-7}$ К $^{-1}$, температура начала размягчения $T_{\rm H.p}$ — от 758 до 853 K, химическая устойчивость к действию 4%-ной СН $_3$ СООН характеризуется потерями массы от 0,1 до 5,0%. Изменение ТКЛР в зависимости от состава отражено на рис. 1.

В стеклах с постоянной молярной долей $Me_2O=19,0\%$ (состав а)) при увеличении $x_{B_2O_3}$ до 25% наблюдается снижение ТКЛР, с дальнейшим ее повышением—рост ТКЛР. Вероятно, склонность высокоборных стекол к ликвации и кристаллизации способствует увеличению ТКЛР. Влияние TiO_2 на TKЛР исследуемых

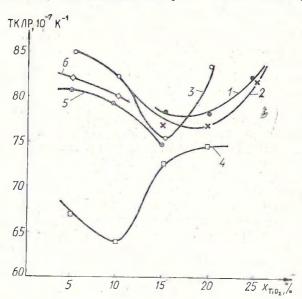


Рис. 1. Изменение ТКЛР стекол системы Me₂O — B_2O_3 — TiO_2 — SiO_2 (10,5% Na₂O, 6,5% K₂O, 2,0% Li₂O) в зависимости от x_{TiO_2} и $x_{B_2O_3}$: x_{B_2

стекол находится в сложной зависимости от его молярной доли. С ростом молярной доли TiO2, вводимого вместо SiO₂, значения ТКЛР вначале уменьшаются, а затем резко возрастают. Видимо, это обусловлено изменением роли титана в структуре стекла. Имея малый ионный радиус, высокую валентность и большую электроотрицательность, часть ионов титана, используя слабополяризованный катион кислорода, поставляемый оксидами $\frac{1}{1}$ щелочных металлов [1, $\frac{1}{2}$], может принимать участие в формировании смешанного титаносиликатного каркаса, укрепляя его и снижая ТКЛР. Однако при Me₂O/TiO₂ ≤ 1 растворимость титана в стекле ограничивается вследствие недостатка кислорода, поставляемого оксидами щелочных металлов. Это способствует переходу титана из анионной части структуры в катионную, развитию ликвации и кристаллизации, что может повысить ТКЛР [1]. Следует отметить, что x_{TiO_2} , при которой на графике наблюдаются перегибы $TK \Pi P$, зависит от $x_{B_0Q_0}$ в стекле. Вероятно, в процессе конкурирующей деятельности Ті⁴⁺ и В³⁺ по использованию ионов-модификаторов ионы титана имеют некоторое преимущество, способствуя тем самым переходу значительной части атомов бора из четверной координации в тройную, что еще в большей степени повышает склонность данных стекол к кристаллизации. При $x_{B,O}$, >25% на кривых ТКЛР прослеживается нарушение указанных закономерностей (см. рис. 1, кривые 5, 6): резко повышается ТКЛР и на кривых отсутствуют перегибы. Такие изменения в свойствах можно объяснить наличием ликвации и кристаллизации данных стекол. Их ИК спектры подтверждают эти предположения, фиксируя наличие тригонально-координированного бора (полосы поглощения в области 1350-1400 см-1). Причем молярная доля тригонально-координированного бора возрастает с увеличением хво, (рис. 2). Повышение интенсивности поглощения при 690 см-1, по данным [2-4], свидетельствует о кристаллизации ТіО2 в матричной фазе, что подтверждается и данными электронной микроскопии. Температура начала размягчения и химическая устойчивость данных стекол имеют тенденцию к снижению с ростом $x_{B_2O_3}$, а влияние титана на эти свойства сказывается в меньшей степени.

В составе с постоянной молярной долей SiO_2 , равной $45\,\%$ (состав б)), ТКЛР уменьшается с ростом $x_{\rm B_2O_2}$ и $x_{\rm TiO_2}$. Причем на кривых «состав— свойство» не наблю-

дается изломов. Однако если $x_{\rm B_2O} > 30\,\%$, ТКЛР начинает уменьшаться особенно резко и при 45% $\rm B_2O_3$ достигает значения менее $50\cdot 10^{-7}\rm K^{-1}$. Температура начала размягчения исследуемых стекол возрастает с ростом $x_{\rm TiO}$ до 25%, с дальнейшим повышением $x_{\rm TiO}$ $T_{\rm H.p}$ снижается. При увеличении $x_{\rm TiO}$ до 20% повышается также химическая устой-

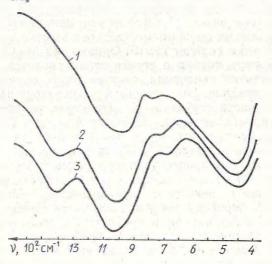


Рис. 2. ИК спектры поглощения стекол различного состава (молярная доля, %): $I-Me_2O-19$, B_2O_3-10 , TiO_2-15 , SiO_2-56 ; $2-Me_2O-19$, B_2O_3-30 , TiO_2-10 , SiO_2-41 ; $3-Me_2O-19$, B_2O_3-35 , TiO_2-10 , SiO_2-36

чивость. Если $x_{\rm TiO_2} > 20\,\%$, процесс замедляется и потери массы при обработке стекол в 4%-ной СН₃СООН не изменяются. По-видимому, при этом происходят структурные изменения в стеклах, что прослеживается на кривых ТКЛР.

Проведенное исследование позволило выявить базовые составы стекол, на основе которых путем различных добавок и преобразований можно получить бесфтористые эмали с пониженной температурой оплавления.

ЛИТЕРАТУРА

1. *Ходаковская Р. Я.* Химия титаносодержащих стекол и ситаллов.— М., 1978.— С. 285.

2. Аппен А. А. Химия стекла. — М., 1970. — С. 351.

3. *Плюснина И. И.* Инфракрасные спектры силикатов.— М., 1967.— С. 189.

4. Болдырев А. И. Инфракрасные спектры минералов.— М., 1976.— С. 189.

УДК 666.175

Л. Г. Ходский, Г. В. Бычко, А. Д. Исиченко

СТЕКЛООБРАЗОВАНИЕ И НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СТЕКОЛ СИСТЕМ Z_{nO} — S_{rO} — $B_{2}O_{3}$ — S_{iO} 2 И Z_{nO} — S_{rO} — $B_{2}O_{3}$ — $Al_{2}O_{3}$ — S_{iO} 2

Данная работа посвящена исследованию стеклообразования, температурного коэффициента линейного расширения (ТКЛР), температуры начала размягчения $T_{\rm H.p.}$, плотности d и химической устойчивости стекол систем ${\rm ZnO-SrO-B_2O_3-SiO_2}$ и ${\rm ZnO-SrO-B_2O_3-SiO_2-Al_2O_3}$, сведения о которых в литературе [1—4] отсутствуют.

Синтез стекол осуществляли в фарфоровых и корундизовых тиглях в электрической силитовой печи при температуре 1373 К. Время выдержки при максимальной температуре до полного провара составляло 30 мин. В качестве реактивов использовали кварцевый песок,

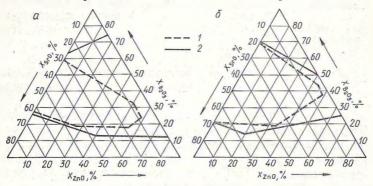


Рис. 1. Стеклообразование стекол в системах ZnO — SrO — B_2O_3 — SiO2 при $x_{SiO_2}=10\,\%$ (a) и ZnO — SrO — B_2O_3 — SiO2 — Al_2O_3 при $x_{Al_2O_3}=5\,\%$, $x_{SiO_2}=5\,\%$ (б):

I—граница области прозрачных стекол; 2—граница области изученных составов