К.С. Досалиев, доц. канд. техн. наук; Г.Узакбаева, магистрант; Б. Атамбаев, магистрант (Южно-Казахстанский университет им. М.Ауэзова, г. Шымкент, Казахстан)

ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО СОСТАВА ФОСФОГИПСА ДЛЯ ВОЗВЕДЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА АВТОМОБИЛЬНОЙ ДОРОГИ

С целью утилизации промышленных отходов, нами предлогается введение фосфогипса в состав грунта земляного полотна автомобильной дороги. Для введения данного отхода нам необходимо изучение химического состава. К тому же, химический состав фосфогипса немаловажно отражается на водопоглощение. Водные свойства материалов — это комплексное понятие, заключающееся в водоустойчивости, водонасыщенности, водоотдаче и водопроницаемости исходных материалов.

Правильно подобранный состав подстилающего слоя дорожного полотна автомобильной трассы решает вопрос водно-теплового баланса и поддержания влагоемкости и водонасыщения подушки между земляным покрытием и дорожной одеждой за счет резкого перепада температур и усадки подушки. Поэтому для регулирования воднотеплового баланса и поддержания влагоемкости и влагонакопления между земляным полотном и дорожной одеждой, с целью снижения усадки земляного полотна за счет пучения дорожного покрытия, являющих следствием образования ям и выбоин, предложено введение в состав шихты отходов фосфорных производств, фосфогипса завода минеральных удобрений ТОО «Казфосфат» и внутренних вскрышных пород бурых углей Ленгерского месторождения [1,2].

Фосфогипс — многотоннажный отход производства ортофосфорной кислоты, полученный экстракционным методом из фосфоритов серной кислотой. Ежегодно образуется около 430 тыс.т. фосфогипса. В Республике Казахстан экстракционная ортофосфорная кислота используется как сырье для производства фосфата, концентрированных простых и сложных удобрений, таких как аммофос, двойной суперфосфат, нитрофос, нитрофоска и др [3].

Основным способом удаления фосфогипса в Республике Казахстан на сегодняшний день является складирование в отвалах, что оказывает негативное влияние на окружающую среду. Внешний вид фосфогипса, образующегося при производстве экстракционной фосфорной кислоты показан на рисунке 1.

Рисунок 1 – Внешний вид фосфогипса

В результате вымывания вредных веществ атмосферными осадками и их пыления в сухую погоду, загрязняется атмосферный воздух, подземные и поверхностные воды, почвенно растительный слой, земля и др. [2]. Усредненный гранулометрический состав фосфогипса приведен в таблице 1.

Таблица 1 – Усредненный гранулометрический состав фосфогипса

Размер фракций, мм	2-5	1-2	1-0,5	0,1-0,5	менее 0,1
Содержание в %	0,3	21,8	63,6	10,1	4,2

Угол естественного откоса фосфогипса получаемого в Таразском филиале ТОО «Казфосфат» Заводе минеральных удобрений, определен с помощью ящика из плексигласа и находится в пределах 33⁰.

Насыпная плотность фосфогипса колеблется в пределах 1300 кг/м³ в зависимости от крупности продукта.

При производстве экстракционной фосфорной кислоты на 1 т готовой продукции образуется около 6 т промытого фосфогипса с удельной поверхностью от 0.18 до 0.25 м²/т, влажность которого составляет около 40%. В пересчете на сухое вещество фосфогипс содержит в среднем (в %): SO_3 - 36.2; CaO - 39.8; P_2O_5 - около 1; Fe_2O_3 - 0.1; MgO_3 - 0.03; K - 0.03 и Na - 0.1.

Усредненный химический состав фосфогипса, получаемого в Таразском филиале ТОО «Казфосфат» Завода минеральных удобрений приведен ниже и содержит (%%): $P_2O_{506\text{щ}}$ - 0,74; $P_2O_{5\text{вод}}$ = 0,21; MgO – следы; N_2O - 0,3789; Al $_2O_3$ - 0,087; F - 0,081; нерастворимый остаток (HO) -19,67; Fe $_2O_3$ - 0,093; CaO - 31,80; SO_4^{2-} - 54,5. В талице 1 приведен химический состав фосфогипса.

Таблица 2 - Химический состав фосфогипса

Element	(keV) mass%	Error%	At%	Compound mass%	K	
1	2	3	4	5	6	
O K *	0,525	46,53	0,59	65,20	28,8456	
Mg K *	1,253	0,72	0,13	0,66	0,5028	
Al K *	1,486	0,59	0,11	0,49	0,5135	
Si K	1,739	8,08	0,10	6,45	8,6563	
PΚ	2,013	3,49	0,12	2,53	4,7441	
S K	2,307	14,09	0,09	9,85	19,0820	
Ca K	3,690	26,49	0,15	14,82	37,6557	
Total		100,00		100,00		
O *0,000	46,45	0,00	0,00	0,00	0,0000	
Mg K *1,253	0,72	0,21	1,99MgO	1,19	0,7066	

Продолжение таблицы 2

1	2	3	4	5	6
Al K *1,486	0,59	0,21	0,74Al ₂ O ₃	1,12	0,7217
Si K 1,739	8,09	0,21	19,38SiO ₂	17,31	12,1655
P K 2,013	3,50	0,28	3,80P ₂ O ₅	8,02	6,6674
S K 2,307	14,11	0,23	29,59SO ₃	35,24	26,8177
Ca K 3,690	26,53	0,20	44,51CaO	37,12	52,9212
Total	100,00	100,00	100,00		

Увеличенный в 100 раз общий вид фосфогипса и его химический состав устанавлен с помощью сканирующего электронного микроскопа JSM-5610 LV с системой химического анализа EDXJED-2201 (JEOL, Япония) и показан на рисунке 2.

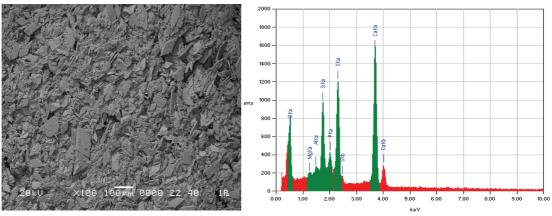


Рисунок 2 – Общий вид фосфогипса, увеличение в 100 раз ЛИТЕРАТУРА

- 1. Садыков Ж.А., Жакипбаев Б.Е., Туленов Н.Н. Использование отходов фосфорной промышленности в дорожном строительстве // Международная научно-техническая конференция. Прага, 2017. С. 27-30.
- 2. Дворкин Л.И., Дворкин О.Л. Строительные минеральные вяжущие материалы. М.: Инфра-инженерия, 2011. 544 с.
- 3. Алтеев Т. Влияние различных факторов на экстракцию фосфорной кислоты из агломерированного фосфатно-кремнистого сырья / Проблемы химической технологии нерганических и органических, силикатных и строительных материалов и подготовки инженерных кадров: тр. междунар. науч.-практ. конф. Шымкент, 2002. Т. 1. С. 38-40.