М.Т. Насковец канд. техн. наук, доц. (БГТУ, Минск); А.А. Борозна, канд. техн. наук (СПбГЛТУ)

НАПРАВЛЕНИЯ ПОВЫШЕНИЯ НАДЕЖНОСТИ И СНИЖЕНИЕ ЭНЕРГОЕМКОСТИ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИХ МАШИН В ЛЕСНОМ КОМЛЕКСЕ

Оборудование лесной промышленности и транспортнотехнологические машины эксплуатируются в сложных природнотехнологических условиях, с большими нагрузками, при отсутствии качественного сервисного обслуживания. Эти обстоятельства приводят к ускоренному износу техники и большому расходованию энергетических ресурсов. Постоянное повышение цен на топливо, машины и запасные части к ним ставит актуальной задачу повышения износостойкости и снижения энергопотребления при проведении работ лесозаготовительной техники.

Повысить надежность механизмов и увеличить их срок службы, снизить расход энергоресурсов можно, применив новейшую разработку российских ученых, защищенную патентом и известную как – PBC-технология [1].

Технология позволяет в условия штатной эксплуатации восстанавливать изношенные поверхности всех видов трущихся металлических деталейнаращивая на поверхности трения металлокерамическую структуру с уникальными характеристиками.

РВС-технология — это совокупность операций использования ремонтно-восстановительных составов (РВС), состоящих из минералов и специальных добавок. РВС состоит из кристаллов минералов (серпентинит, шунгит, доломит и др.) и синтетических добавок, составляющих ноу-хау. Ремонтно-восстановительный состав представляет собой многокомпонентную высокодисперсную смесь природных минералов, которая при высокой температуре и давлении образует на поверхности пар трения антифрикционный и антиизносный слой [2].

На обрабатываемой поверхности образуется кристаллический защитный слой. Кристаллы осевшие вдоль поверхности трения, срастаясь, образовывают по всему пятну контакта непрерывную сеть твердых монокристаллов. Новый слой обладает высочайшей адгезией к поверхностям, а также высокой износостойкостью и низкой антифрикционностью. Образованный на поверхности детали новый слой, имеет уникальные свойства и называется металлокерамическим защитным слоем (МКЗС). [3]

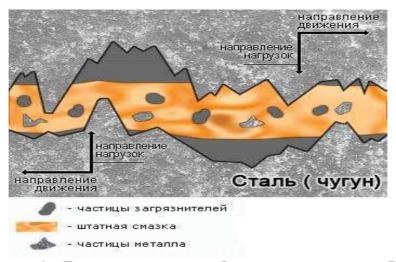


Рисунок 1 – До использования триботехнического состава РВС

Механизмы, подвергшиеся обработке по PBC-технологии в процессе эксплуатации, требуют меньше технико-экономических затрат, а также в меньшей степени вредят экологии.

Обработка проводится в 3 этапа:

1 этап — очистка мелкими абразивами, входящими в состав PBC, подвергшейся износу поверхности;

2 этап — формирование на очищенной поверхности деталей (стали, чугуна) слоев кристаллической структуры, которая выравнивает поврежденную металлическую поверхность трущихся деталей. Слой защиты образуется за счет взаимодействия металла изношенной поверхности и веществ, входящих в структуру РВС.

3 этап — поддержание оптимального защитного слоя с характеристиками, необходимыми трущимся деталям для долговременной и бесперебойной в конкретном режиме работы. К такимпараметрам относится: пористость, волнистость, шероховатость, толщина слоя и т. д. Даже, при наличии в смазочном масле минимального количества РВС достаточно для адаптации характеристик образованного слоя. В период нахождения состава в смазке процесс износа поверхностей трения минимален, так как, образованный защитный слой обладает способностью удерживать масло на трущихся деталях, и режим трения сдвигается в зону «мокрого трения», при котором износ минимален.

При выполнении ремонтно-восстановительных работ с использованием PBC-технологии выявляются следующие преимущества:

- обработка выполняется в режиме обычного (штатного) использования техники без прерывания технологического процесса;
- при использовании на незапущенной стадии гораздо дешевле капитального ремонта;

- позволяет восстановить и продлить "жизнь" техники с износом до 60%;
- так же применимо для профилактики увеличения износостойкости новой техники и оборудования;

В сравнении с другими присадками и модификаторами трения РВС восстанавливает зазоры деталей, образует надежную металлокерамическую защитную поверхность оптимизирующие зазоры и предотвращающую "сухое трение", а, следовательно, и дальнейший износ деталей.

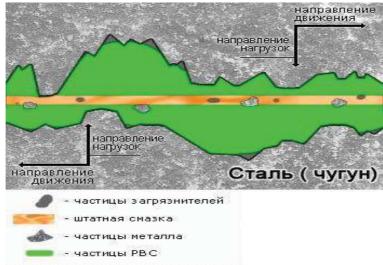


Рисунок 2 – После использования РВС

Для проверки целесообразности использования РВС для восстановления работоспособности двигателя лесовозного автомобиля выпуска 1969 года в учебно-научной лаборатории Санкт-Петербургского государственного лесотехнического университета проводился эксперимент с применением РВС-технологии.

Для эксперимента использовались: обкаточно-тормозной стенд КО-2204 и двигатель ЗИЛ-130 выпуска 1969 года. Силовую установку установили на одной оси с валом гидротормоза. Перед началом эксперимента были сняты контрольные показания компрессии и расхода топлива. После чего в систему смазки двигателя добавили ремонтновосстановительную смесь — РВС. Силовая установка подверглась испытаниям проводимым под нагрузкой продолжительностью 40 часов. После испытаний сняли контрольные показания (табл. 1 и табл. 2.)

Таблица 1 – Показания, снятые до и после обработки двигателя PBC составом. Компрессия по цилиндрам, кгс/см²

Цилиндр	1	2	3	4	5	6	7	8
До	6,7	6	6,7	6,5	6,3	6,1	6,2	6,8
После	8,6	8,4	8,9	8,5	8,6	8	8,8	8,5

Измерения: силовая установка выводится на постоянные обороты (2000 об/мин) и подвергается подаче максимальной нагрузки. Затем нагрузку постепенно снижали и проводили контрольные замеры объема потребляемого топлива на контрольных промежутках времени. Результаты представлены в табл. 2 [4].

Таблица 2 – Расход топлива до и после обработки РВС - составом

Nº	До обработки				После обработки				
	об/мин	Р, кгс	установ. об/мин	Δ, гр	об/мин	Р, кгс	установ. об/мин	Δ, гр.	
1	2000	30	950	220	2000	30	900	205	
2		25	1300	245		25	1100	210	
3		20	1400	270		20	1300	235	
4		15-17	1460	280		15-17	1500	260	
5		10-12	1680	285		10-12	1700	255	

Эффективная мощность двигателя Ne, л. с.:

$$Ne = 0.001PTn$$

где 0,001 – постоянный коэффициент весового механизма гидротормоза; n — частота вращения двигателя в минуту; P_T — нагрузка на гидротормозе, кгс.

Часовой расход топлива $G_{\rm T}$, кг/ч: $G_t = \frac{3.6\Delta G}{t},$

$$G_t = \frac{3.6\Delta G}{t},$$

где — расход топлива за время опыта, Γ ; t — время опыта, c.

Удельный расход топлива g_e , г/э.л.с. ч $g_e = \frac{1000G_t}{N_c}$

$$g_e = \frac{1000G_t}{N_e}$$

Среднее эффективное давление pe, кгс/см²:

$$p_e = \frac{0.9P_T}{V_S},$$

где — литраж двигателя, π (6,0 π).

Таблица 3 – Расчетные показатели

Taosinga 5 Tac icinbic nokasaresin								
	Эффек-	Эффек-	Эффек- Часовой расход		Удельный расход			
No	тивная	тивное	топлин	ва, кг/ч	топлива, г/э.л.с. ч			
110	мощность,	давление,	до обра-	после	до	после		
	л. с.	кгс/см2	ботки	обработки	обработки	обработки		
1	60	4,5	6,6	6,15	110	102,5		
2	50	3,75	7,35	6,3	147	126		
3	40	3	8,1	7,05	202,5	176,2		
4	30	2,25	8,4	7,8	280	260		
5	20	1,5	8,55	7,65	427,5	382,5		

РВС-технология является эффективным средством повышения надежности и снижения энергозатрат техники в лесном комплексе. По показаниям видно, что произошло повышение компрессии в цилиндро-поршневой группе до нормативных значений, предусмотренных для данной силовой установки, а объем потребляемого горючего сократился в зависимости от нагрузки на 7–15%.

ЛИТЕРАТУРА

- 1. Салминен Э.О., Борозна А.А., Пушков Д.В. Снижение энергоемкости и повышение надежности машин и оборудования в лесном комплексе. СПБГЛТУ, Санкт-Петербург.
- 2. Салминен Э.О., Пушков Д.В., Борозна А.А. Использование нанотехнологий для снижения энергоемкости и повышения надежности работы машин и оборудования в лесном комплексе. М. МГУЛ. 2012.
 - 3. РУСПРОМРЕМОНТ [Электронный ресурс] www.rvs-tech.ru
- 4. Борозна А.А, Салминен Э.О, Пушков Д.В Повышение надежности и снижение энергоемкости транспортно-технологических машин.
- 5. Инновации на транспорте и в машиностроении. Сборник трудов III международной научно-практической конференции. Том I. Секция "транспорт и логистика." Санкт-Петербург 2015г стр 23-27.

УДК 621.3.027.542.3

Ю.А. Ким, канд. техн. наук, доц.; Н.П. Зубович, магистрант (БНТУ, г. Минск); М.Т. Насковец, канд. техн. наук, доц; Б.В. Войтеховский, ст. преп. (БГТУ, г. Минск)

О РАСПРЕДЕЛЕНИИ ВЕЛИЧИН ДАВЛЕНИЯ ПОД ГРУНТОЗАЦЕПАМИ КОЛЕСНОГО ДВИЖИТЕЛЯ ПОВЫШЕННОЙ ПРОХОДИМОСТИ

Процесс взаимодействия колесного движителя с дорожным покрытием представляется чрезвычайно сложным. Связано это с тем, что свойства грунта не постоянны и меняются по мере движения транспортного средства. В целом грунт не является упругим, пластичным или вязким, а вязко-упруго-пластичным телом. И каждая из этих составляющих проявляется в большей или меньшей степени в зависимости от целого ряда факторов. Это – структура и состав, влажность, плотность и время воздействия. Так, например, при расчете напряженно-деформированного состояния грунтового массива, являющегося основанием фундамента строительного сооружения, когда действуют большие по величине и длительные нагрузки грунт проявляет пластичность, ползучесть и другие реологические свойства. При ис-