Синтез и свойства катиондефицитных производных NdBa(Fe,Co,Cu)₂O₅₊₈ как потенциальных катодных материалов ТОТЭ

Морозов М.В., Филютчик А.Н.

Белорусский государственный технологический университет, Республика Беларусь, 220006, Минск, ул. Свердлова, 13a e-mail: wozmor@mail.ru

Слоистые кислороддефицитные двойные перовскиты RBaMe'Me"O_{5+δ} (R - Y, редкоземельный элемент (РЗЭ), Me', Me"- 3d-металл) обладают комплексом интересных и практически значимых свойств [1-2], включая высокие значения электропроводности и термо-ЭДС, и содержат в своей структуре слабосвязанный кислород, поэтому могут быть использованы в функциональных материалов различного качестве назначения (высокотемпературные оксидные термоэлектрики, электродные материалы для твердооксидных топливных элементов (ТОТЭ), материалы для рабочих элементов полупроводниковых химических газовых сенсоров, катализаторы окисления углеводородов и др.) [3]. В последнее время в качестве перспективной основы для создания катодных материалов для ТОТЭ рассматриваются слоистые феррокобальтиты неодима-бария [4]. Одним из способов модификации свойств слоистых перовскитов является создание в структуре катионной нестехиометрии [5].

В данной работе с целью разработки новых катодных материалов ТОТЭ изучено влияние дефицита катионов в А- подрешётке перовскита на структуру и свойства NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ}.

Для Этого был проведен синтез керамических образцов $Nd_{0.90}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$, $Nd_{0.95}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$, NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ}, $NdBa_{0.95}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$, $NdBa_{0.90}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$. Катиондефицитные перовскиты получали по стандартной керамической методике [6] из Nd₂O₃ (HO-Л), BaCO₃ (ч), Fe₂O₃ (ос.ч. 2–4), Co₃O₄ (ч) и CuO (ч.д.а.), смесь которых подвергали помолу в планетарной лабораторной шаровой мельнице Retsch PM 100 СМ (300 об/мин, 1 ч, материал мелющих шаров и стакана – ZrO₂, с добавлением этанола), после чего прессовали с добавлением этанола в таблетки диаметром 25 мм и высотой 4-6 мм и обжигали при температуре 1173 К на воздухе в течение 40 ч на корундовых подложках. После обжига для дополнительной гомогенизации образцов керамику измельчали и подвергали изучения термического повторному помолу. Для расширения, электропроводности и термо-ЭДС из полученных порошков прессовали бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе в течение 10 часов при 1273 К.

Идентификацию образцов проводили при помощи рентгенофазового анализа (РФА) на рентгеновском дифрактометре Bruker D8 (излучение Cu-Kα, Ni-фильтр) при комнатной температуре. Параметры кристаллической

267

структуры исследованных твердых растворов определяли с помощью рентгеноструктурного табличного процессора RTP [7].

Кажущуюся плотность образцов ($\rho_{каж}$) находили по их массе и геометрическим размерам. Рентгенографическую плотность образца определяли по формуле (1):

$$\rho_{\rm pehr} = \frac{M \cdot z}{V \cdot N_A} \tag{1}$$

где M— молярная масса, z— число формульных единиц, приходящихся на одну элементарную ячейку (для данных соединений z = 1), V— объем элементарной ячейки, N_A — число Авогадро.

Общую пористость (П) керамики вычисляли по формуле (2):

$$\Pi = \left(1 - \frac{\rho_{\text{Ka}\mathcal{K}}}{\rho_{\text{peht}}}\right) \cdot 100\%, \tag{2}$$

где $\rho_{\text{каж}}$ и $\rho_{\text{рент}}$ – кажущаяся и рентгенографическая плотность образца.

Открытую пористость определяли по водопоглощению образцов. Закрытую пористость определяли как разность между общей и открытой пористостью. Индекс кислородной нестехиометрии (δ) определяли методом иодометрического титрования [8], учитывая восстановление ионов кобальта, железа и меди [9]. Термическую стабильность порошкообразных образцов исследовали при помощи термоаналитической системы TGA/DSC–1/1600 HF на воздухе в интервале температур 300–1100 К.

Электропроводность (σ) и коэффициент термо-ЭДС (S) образцов изучали на воздухе в интервале температур 300–1100 К. Перед измерениями на торцах образцов формировали Ag-контакты. Энергию активации проводимости (E_{σ}) рассчитывали из линейных участков зависимости $\ln(\sigma \cdot T) = f(1/T)$. Энергию активации возбуждения носителей заряда (E_S) (полярона малого радиуса) рассчитывали из линейных участков зависимости S = f(1/T). Энергию активации переноса (E_m) полярона рассчитывали как $E_m = E_{\sigma} - E_S$.

Согласно данным рентгенофазового анализа все синтезированные образцы были, в пределах погрешности РФА, однофазны, а их структура соответствовала структуре NdBaFeCo_{0.5}Cu_{0.5}O₅₊₈ [9], при этом создание дефицита катионов не приводит к изменению симметрии изученных перовскитов, которая остается тетрагональной. Параметры кристаллической решетки катиондефицитных перовскитов приведены в табл. 1. Как видно, создание вакансий в подрешетке неодима привело к некоторому увеличению размеров кристаллической ячейки.

Таблица 1. Параметры кристаллической решетки (a, c, V), степень тетрагонального искажения (c/2a) и индекс кислородной нестехиометрии (δ) образцов катиондефицитных феррокупрокобальтитов неодима–бария

	<i>a</i> , Å	<i>c</i> , Å	V, Å	c/2a	δ
$Nd_{0.90}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$	3.927	7.726	119.1	0.9837	0.70
$Nd_{0.95}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$	3.926	7.709	118.8	0.9818	0.68
$NdBaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$	3.921	7.707	118.5	0.9828	0.81
$NdBa_{0.95}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$	3.914	7.696	117.9	0.9831	0.70
$NdBa_{0.90}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$	3.918	7.712	118.4	0.9842	0.69

Полученные образцы обладали достаточно низкой пористостью (плотность спеченных образцов составляла 90–96% от рентгенографической), причем наибольшей относительной плотностью обладала керамика состава NdBa_{0.95}FeCo_{0.5}Cu_{0.5}O_{5+ δ}. Как видно из данных таблицы 2, дефицит катионов как в подрешетке неодима, так и бария, приводил к улучшению спекаемости образцов (пористость образцов уменьшалась).

Таблица 2. Рентгенографическая (р_{рент}), кажущаяся (р_{каж}) и относительная (р_{отн}) плотность, общая (П), открытая (П₀) и закрытая (П₃) пористость образцов катиондефицитных перовскитов

	р _{рент} , г/см ³	р _{каж} , г/см ³	р _{отн} , %	П, %	По, %	П ₃ , %
Nd _{0.90} BaFeCo _{0.5} Cu _{0.5} O _{5+δ}	6.47	6.08	94.0	6.0	1.9	4.1
Nd0.95BaFeCo0.5Cu0.5O5+8	6.59	6.09	92.4	7.6	2.3	5.3
NdBaFeCo _{0.5} Cu _{0.5} O _{5+δ}	6.71	6.06	90.3	9.7	5.7	4.0
NdBa _{0.95} FeCo _{0.5} Cu _{0.5} O _{5+δ}	6.65	6.39	96.1	3.9	1.7	2.2
NdBa0.90FeCo0.5Cu0.5O5+8	6.52	6.17	94.6	5.4	1.8	3.6

Согласно результатам термического анализа образцы катиондефицитных перовскитов были термически стабильны вплоть до температур T = 685-745 К, при которых наблюдалась небольшая потеря массы (0.4–0.6%), обусловленная выделением из образцов слабосвязанного кислорода (δ). Величина температуры начала потери массы для катиондефицитных образцов была выше, чем для базовой фазы, что указывает на повышение термической стабильности фаз при создании дефицита катионов в подрешетках неодима и бария структуры NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ}.

Все полученные в работе образцы являлись полупроводниками р-типа (коэффициент термо-ЭДС во всем исследованном интервале температур положителен). Характер электропроводности (σ) керамики вблизи 900–1000 К $(\partial \sigma / _{\partial T} > 0)$ к полупроводникового ОТ изменялся металлическому $(\partial \sigma_{/ \partial T} < 0)$ (рисунок). Создание дефицита до 5 мол.% катионов в Аподрешетке перовскита привело к росту электропроводности при высоких температурах, дальнейший рост количества вакансий в подрешетках бария и неодима приводил К снижению электропроводности И для Nd_{0.90}BaFeCo_{0.5}Cu_{0.5}O_{5+δ} значение удельной электропроводности оказалось ниже σ базового образца ($\sigma_{1000} = 39.1$ См/см, что на 13 % меньше σ_{1000} Nd_{0.90}BaFeCo_{0.5}Cu_{0.5}O_{5+δ}). С ростом температуры коэффициент термо-ЭДС образцов уменьшался, достигая минимального значения при 900-1000 К. Энергия активации проводимости керамики менялась в пределах 0.281-0.308

эВ, в целом, несколько снижаясь при образовании катионных вакансий. Энергия активации возбуждения носителей заряда для керамики NdBa_{0.90}FeCo_{0.5}Cu_{0.5}O_{5+δ} составила 0.087 эВ, а энергия активации миграции – 0.194 эВ.

Рисунок 1. Температурные зависимости удельной электропроводности NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ} (*1*), Nd_{0.95}BaFeCo_{0.5}Cu_{0.5}O_{5+δ} (*2*), Nd_{0.90}BaFeCo_{0.5}Cu_{0.5}O_{5+δ} (*3*), NdBa_{0.95}FeCo_{0.5}Cu_{0.5}O_{5+δ} (*4*), NdBa_{0.90}FeCo_{0.5}Cu_{0.5}O_{5+δ} (*5*)

Таким образом, в настоящей работе получены керамические образцы на основе NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ}, имеющие до 10% дефицита катионов в подрешетке неодима или бария, изучена их структура и микроструктура, термическая стабильность, электропроводность и термо-ЭДС. Установлено, что создание до 5 мол.% дефицита катионов в А- подрешетке NdBaFeCo_{0.5}Cu_{0.5}O_{5+ δ} приводит к улучшению спекаемости, повышению термической стабильности, росту удельной электропроводности при повышенных температурах и снижению энергии активации проводимости.

Литература

- [1] Kundu A., Pralong V., Raveau B., Caignaert V. J. Mater. Sci., 2011, 46, 681.
- [2] Istomin S.Y., Lyskov N.V., Mazo G.N., Antipov E.V. Russ. Chem. Rev., 2021, 90, 644.
- [3] Klyndyuk A.I. Advances in Chemistry Research, 2010, 5, 59.
- [4] Kim Y.N., Kim J.-H., Manthiram A. J. Power Sources, 2010, 195, 6411.
- [5] Yi K., Sun L., Li Q., Xia T., Huo L., Zhao H., Li J., Lu Z., Bassat J.-M., Rougier A. *Int. J. Hydrog. Energy*, 2016, **41**, 10228.
- [6] Er-Rakho L., Michel C., LaCorre Ph., Raveau B. J. Solid State Chem., 1988, 73(2), 531.
- [7] Avertsev K.I., Golubev A.V., Poddyakov M.A., Tchebotarev Ja.N. X-ray structure tabular processor RTP Version 3.2, 17.12.2000, UNI INM State Scient. Centre, Moscow.
- [8] Urusova A.S., Cherepanov V.A., Aksenova T.V., Gavrilova L.Y., Kiselev E.A. J. Solid State Chem., 2013, **202**, 207.
- [9] Клындюк А.И., Журавлева Я.Ю. Журн. неорган. хим., 2022, 67(12), 1874.

Авторы выражают благодарность руководителям работы доцентам кафедры физической, коллоидной и аналитической химии Белорусского государственного технологического университета А.И. Клындюку и Е.А. Чижовой за постановку задачи, помощь в выполнении эксперимента и обсуждении результатов работы.