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Abstract: This paper presents the results of a study on the preparation and characterization of a
Cr-DND/MoN detonation chromium-nanodiamond coating deposited on cemented tungsten carbide
(WC–3 wt.% Co) mill blades using Arc-PVD and electrodeposition methods. The physical and
mechanical characteristics of the coatings were investigated by scanning electron microscopy (SEM),
energy dispersive X-ray spectroscopy (EDS), XRD analysis, Raman spectroscopy, micro-identification,
and scratch test (evaluation of the coating adhesion). It was shown that the Cr-DND/MoN coating
consists of successive layers of Cr-DND (top), Cu (middle) and MoN (bottom) with separate phases
of γ-Mo2N, α-Mo, α-Cu, Cr-DND and nanodiamonds. The Cr-DND composite electrochemical
coating (CEC) was deposited from the conventional chromium plating electrolyte with the addition
of nanodiamonds. The copper interlayer was deposited by the Arc-PVD method on the surface of
the MoN coating to improve the adhesion strength of the Cr-DND CEC. The coating showed an
optimum microhardness of about 14 ± 1 GPa and good adhesion with a critical load Lc of about 93 N.
In addition to the expected experimental results, the coating has high wear resistance, confirmed by
scratch tests.

Keywords: coating; nanodiamonds; chromium; molybdenum nitride; mechanical properties

1. Introduction

The world’s leading tooling companies (Leitz, TIGRA, LEUCO, KANEFUSA CORPO-
RATION, Iscar, Sandvik Coromant, etc.) have been using innovative materials in recent
years to create commercial products, paying great attention to the development of new
hard alloys and high-speed steels [1–4]. Milling cutters with WC-Co cemented carbide are
widely used to process materials [5,6]. Although these tools offer a good ratio of hardness
to crack resistance in woodworking [7], they cannot fully meet the requirements of modern
wood processing due to the corrosion of cemented carbides [8–10]. In addition to the
synthesis of new materials, research is being carried out to protect the surface layers of
such tools against wear and to preserve their geometry under increasingly demanding
processing conditions [11]. One of the main directions of this activity is the development
and use of wear-resistant coatings on cutting tools. It has already been shown that coatings,
unlike other methods of hardening the surfaces of construction materials, can increase tool
productivity and improve the quality of the treated surface [12,13].
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Today, one of the most common methods of material design is to create multilayer
coatings composed of layers of different compositions using cathodic vacuum physical
vapor deposition (Arc-PVD) on milling cutters [14–16]. The deposition of multilayer
composites increases stability against external influences [17,18]. It has been reported
in the literature that a multilayer Si-MoSi2 coating structure consisting of molybdenum
can improve the thermal resistance, corrosion resistance and mechanical properties of a
coating [19,20]. Combinations of chromium and molybdenum nitrides have been shown to
have the best characteristics [21–23].

In addition, the method of co-deposition of dispersed particles with metal coatings
results in composite electrochemical coatings (CECs) with increased hardness, corrosion
resistance and wear resistance, and low friction [24].

The deposition of diamond coatings on WC-Co cemented carbide cutters of cutting
tools by chemical vapor deposition (CVD) is reported in [25,26]. Diamonds with a char-
acteristic size of a few to several hundred nanometers are known as nanodiamonds or
ultra-dispersed diamonds (UDD) [27]. Various methods have been used for the synthesis
of nanodiamonds, including synthesis at high pressures and temperatures [28], chemical
vapor deposition (CVD), laser ablation [29], detonation synthesis [30], etc. Of these methods
for synthesizing nanodiamonds, only detonation synthesis is used on an industrial scale
(several tens of tonnes per year) because of its speed, relative simplicity and low cost for
large quantities. An industrial line for the production of nanodiamonds by detonation
synthesis (DND) with pressurized nitric acid at temperatures of 200–250 ◦C is part of the
FSUE “SCTB “Technology” (St. Petersburg) facility [31]. In Belarus, they are produced at
JSC “Sinta” (Minsk) [32].

DND is used in the creation of CECs, polymer compositions, lubricants, polishing
pastes, etc. [33,34]. Modification of chromium coatings with DND improves their tribome-
chanical properties, reducing the coefficient of friction for lubrication-free conditions by 1.8
to 2.9 times and the wear intensity by 6 to 10 times [35]. Currently, nickel-based CECs are
widely used in industry. Ni-P coatings possess fairly high hardness, corrosion and wear
resistance [36,37]. For this reason, a promising direction for the use of chromium-based
CECs with DND and nickel-based CECs with DND, when certain conditions are met, is the
coating of Ni as a matrix with DND, which does not provide the high strength characteristic
for tool strengthening [38,39].

Studies in the field of preparation of multilayer coatings by the combination of elec-
trodeposition and Arc-PVD methods have shown [40,41] that these films have good physical
and mechanical properties, and that the incorporation of DND into the coatings further
improves their characteristics. The treatment of cemented carbide knives with WC–4 wt.%
Co by the combined electrodeposition and Arc-PVD method has been shown to increase
the durability period of ZrN-Ni-Co coated cutting tools for laminated chipboard milling.
The microhardness of the combined ZrC/Ni-nanodiamonds coatings was 25 ± 6 GPA.
Pilot tests on ZrC/Ni-nanodiamonds coated cutting tools have shown that when milling
laminated chipboard, their durability period increases by 1.5 to 1.6 times compared to
bare tools.

However, the effects of the combined method of electrodeposition and Arc-PVD
treatment on the microstructure, phase composition and tribological effects of the knife
blades of milling tools used in wood processing have been little studied. This work is part
of the research on combined multilayer systems consisting of nanodiamonds and coatings
produced by the Arc-PVD method for modified tool applications, where nanodiamonds
are used as a component to extend the tool life.

Therefore, the aim of this research is to describe the preparation of a combined Cr-
DND/MoN multilayer coating on WC-Co cemented carbide knives of wood cutting tools
using Arc-PVD and electrodeposition methods and the study of their phase composition,
microstructure and mechanical properties in terms of hardness and adhesion.
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2. Materials and Methods

The substrate was a WC-Co cemented carbide knife purchased from the company
Leitz (Germany). The nanodiamonds used in this work (registered trademark “UDA-
SP”) were produced by JSC “Sinta” (Minsk). The Cr-DND film was deposited from the
aqueous chromium electrolyte at a current density of 50 A/dm2 at 50–60 ◦C. The electrolyte
contained CrO3 (250 g/dm3), H2SO4 (2.5 g/dm3) and DND (2–5 g/dm3 in suspension). The
electrodeposition was carried out under magnetic stirring, to homogenize the nanodiamond
suspension in the electrolyte. The surface treatment of the carbide knife was carried
out thoroughly before electroplating. The detailed preparation process was described
previously [42].

The MoN film and the Cu film of the Cr-DND/MoN coating were formed by following
the standard steps of the Arc-PVD method under nitrogen atmosphere using the Bulat unit.
After being pumped to the base pressure of 10−3 Pa, the samples were cleaned with Mo ions
and heated to 600–650 ◦C. The unit had a negative bias voltage of −1 kV. Arc deposition of
the MoN coating was performed under the following conditions: arc discharge current of
200 A, substrate bias of −120 V and N2 pressure of 10−1 Pa. The Cu coating was deposited
under an arc discharge current of 80 A and the same other conditions as the MoN.

The surface morphology and chemical composition of the cross-section were stud-
ied by Hitachi S-4800 scanning electron microscopy (SEM) and energy dispersive X-ray
spectroscopy (EDS), respectively.

Structure and phase analysis was performed using an Ultima IV X-ray diffractometer
in Cu-Kα radiation in the XRD mode at the scanning speed of 1◦/min.

The RS spectra were recorded using a LOTIS TII micro-Raman spectrometer. The
excitation was carried out using a solid-state laser with a wavelength of 532 nm, and the
laser scan was performed over a film area of 0.8 µm2.

The hardness of the surface layers was measured by microindentation on an AFFRI-
DM8 apparatus using a Vickers diamond pyramid under a load of 0.5–1.0 N with an
accuracy of ±15 HV.

The adhesion of the Cr-DND/MoN coating to the substrate was analyzed with a
scratch tester. The diamond stylus with a tip diameter of 0.4 × 10−3 m was pulled on the
coating with a sliding speed of 0.83 × 10−4 m/s during the increasing load from 0 to 150 N.
The loading speed of the indenter was 42 N/s. The ramp load applied was 16 N at the
end of the scratch testing. The field of the scratch track and the detection of the fracture
mechanism of the coating were studied using optical and scanning electron microscopes
(Hitachi S-4800).

3. Results and Discussion
3.1. Microstructural Analysis

The microstructure across the thickness section of the Cr-DND/MoN coating is shown
in Figure 1. The samples show a clearly identifiable multilayer structure. It can be seen that
the 655 nm thick Cr-DND layer (top of the picture) was much thinner than the lower MoN
layer (2.43 µm). There is a 357 nm thick intermediate copper layer between the Cr-DND
and MoN layers.

The presence of a copper layer is explained by the deposition technology of CEC
Cr-DND, which requires conductive bases to produce a metal-diamond CEC with high
adhesion. The MoN coating on which the Cr-DND CEC was deposited was a ceramic
characterized by low electrical conductivity. Therefore, a high-electrical-conductivity
copper layer was additionally deposited on the MoN layer by the Arc-PVD process, thereby
increasing the electrical conductivity of the base on which the Cr-DND CEC was deposited.
As a result, the thickness of the Cr-DND/MoN coating reached 3.44 µm.

Figure 1 reveals the dense structure of the MoN layer with columnar growth charac-
teristics. This structure is characteristic of Arc-PVD coatings [43,44].
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Figure 1. SEM image of the cross-section of the Cr-DND/MoN coating.

In Figure 2, the microstructure of the top layer of the Cr-DND/MoN coating shows an
irregular distribution of chromium and carbon in the Cr-DND compound. Figure 2b,c,f
shows that in the Cr-DND layer of the combined Cr-DND/MoN coating there was an
increase in surface carbon content. This result coincides well with reports that nanodia-
monds penetrate a metal plating film as particles trapped within the coating [45] and in
most cases form agglomerates [46]. It was proved that carbon is located on the surfaces of
Ni-DND/ZrC coatings as nanodiamonds, forming agglomerates 0.7 to 3.5 µm in size [47].
Therefore, the increase in surface carbon content in the Cr-DND layer of the Cr-DND/MoN
coating can be explained by the presence of carbon moving to the surface in the form of the
nanodiamond agglomerates of the Cr-DND coating during the electrodeposition process of
the coating.

The EDS spectrum corresponding to the cross-section of the Cr-DND/MoN coating
(Figure 2) shows that the coating had a multilayer structure. The MoN coating was mixed
with neither the top Cr-DND film, nor the Cu layer, nor the substrate.

Electrochemical Cr coatings are characterized by the phenomenon of surface self-
passivation [48], which is illustrated in Figure 2c,e, showing a high oxygen content in the
surface layer of Cr-DND/MoN coating.

Figure 3a,b shows SEM images of the cross-section along the thickness of the sample
and the substrate at high resolution. It should be noted that the film was formed of distinct
multilayers and that the one in contact with the substrate was characterized by a faceted
grain crystal structure (Figure 3b). Figure 3c represents the EDS spectrum of the substrate,
and the inset table, its elemental composition. From the EDS results, it can be concluded
that the substrate consisted of tungsten carbide with a mass fraction of 3% Co (WC–3
wt.% Co), which is in good agreement with the literature [49], according to which the
composition of wood-milling knives corresponds to a fine-grained T03SMG hard alloy
from the company TIGRA (Germany).

The EDS spectrum of the top layer of the Cr-DND/MoN coating showed that the
Cr-DND layer contained 1.3 ± 0.2 wt.% carbon (Table 1).

Table 1. The elemental composition of the Cr-DND/MoN coating top layer.

Element Cr C Cu

Concentration, wt.% 97.6 ± 3.5 1.3 ± 0.2 1.1 ± 0.2

Concentration, at.% 93.73 ± 2.53 5.39 ± 0.81 0.87 ± 0.09
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Figure 2. Microstructure of the Cr-DND/MoN coating: (a) SEM image and EDS mapping images of
the elements (b) Cr, C, Cu, Mo; (c) O, C, Cu, Mo; (d) Cr; (e) O; (f) C; (g) Cu; (h) Mo.

3.2. Surface Morphology

The morphology of the MoN films is characterized by an irregular surface typical of
coatings deposited by the Arc-PVD method [50]. Figure 4a shows that the surface of the
Cr-DND/MoN coating exhibited some roughness, and spheroidal particles with diameters
of 1–5 µm could also be observed on the coating surface. Studies of the surface of the
Cr-DND/MoN coating at different magnifications (Figure 4b,c) showed that the Cr-DND
CEC exhibited a film of aggregates; there was porosity between the aggregates of about
50 nm and within the aggregates of about 10 nm, which is in good agreement with the
literature results for the same type of coating [51]. According to this literature, dispersed
particle inclusions and nanodiamond aggregates with an average radius of 4.53 µm were
found in chrome electrolytes.
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Clearly visible peaks of the X-ray radiation carbon characteristic corresponding to the
positions of spheroids (Figure 5) indicate the presence of some compounds containing car-
bon. Cr-characteristic X-ray radiation had the highest intensity and was evenly distributed
throughout the considered area of the surface (Figure 5b). As a result, it can be claimed
that the spheroids were compounds containing carbon and chromium.
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Nanodiamond particles tend to form agglomerates, as reported by various authors [39,41,52].
Hence, the spheroids were aggregates of nanodiamonds at the top of the Cr-DND layer in
the coating.

3.3. Phase Analysis

The XRD pattern of the Cr-DND/MoN coating is shown in Figure 6, and it does not
reveal any crystalline phase. The XRD studies of the MoN layer of the Cr-DND/MoN
coating were carried out considering the results obtained previously when searching for
the formation of two different MoN phases (β-Mo2N and cubic γ-Mo2N) as a function
of nitrogen pressure, displacement stress and substrate temperature during Arc-PVD
deposition [53,54].
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Figure 6. XRD pattern corresponding to the prepared Cr-DND/MoN coating.

Analysis of the XRD pattern corresponding to the Cr-DND/MoN coating revealed the
existence of a γ-Mo2N phase with a B1 structure (fcc, NaCl). The observed XRD peaks of
molybdenum and cuprum belong to the α-Mo and α-Cu phases with an fcc lattice.

The formation of the α-Mo phase can be explained by the dependence of the coating’s
nitrogen content on nitrogen pressure. It has been shown that in coatings formed at pressure
9.33 × 10−2 Pa, the nitrogen content is nearly two times lower than in coatings produced at
a higher pressure, 0.4 Pa [55].

It can be observed that there is an intense (111) crystallographic plane peak of diamond
located at 43.9◦, which overlaps with the intense Cr peak corresponding to the (111)
crystallographic plane diffraction. From these results, it can be deduced that the coating
consisted of a Cr-DND phase with (111) crystallographic plane dominance. Other diamond
XRD peaks corresponding to the (220) and (311) crystallographic planes were observed
at 2θ ~ 75.3◦ and 91.5◦, respectively. Furthermore, reflections corresponding to the (111),
(220) and (311) crystallographic planes are attributed to the diamond-like lattice with a
parameter a0 = 3.568 ± 0.008 Å [26,56].

As the peaks corresponding to the γ-Mo2N, α-Mo, α-Cu, Cr and Cr-DND phases are
clearly visible in the XRD diffractogram, it proves that there was no solid solubility. In
addition, he low intensity peaks of the tungsten carbide substrate were observed for the
Cr-DND/MoN coating. These results highlight the presence of γ-Mo2N, α-Mo, α-Cu, Cr
and Cr-DND phases and nanodiamonds in the Cr-DND/MoN coating.

3.4. Raman Spectra

The Raman imaging was performed to see the distinct phases in the carbon material
of the prepared coating. Figure 7 shows the Raman spectra for the initial DND sample and
the Cr-DND/MoN coated sample.

For the original DND sample, the Raman spectrum can be represented as a superpo-
sition of three peaks with maxima located at 1322, 1570 and 1625 cm−1. Analysis of the
spectra showed a shift of the peak maximum from that of the sp3-carbon at 1332 cm−1,
which is characteristic of large diamond crystals. A broadening of this peak was also found
(Figure 7) and is associated with the small crystallite size in DND. Figure 7 also shows that
in the background of the peak at 1322 cm−1 there is a peak with a characteristic frequency
shift at 1350 cm−1 belonging to the D-band with sp2-hybrid bonds [56].
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The second peak at 1570 cm−1 belongs to the G-band, which is usually positioned
1581 cm−1 for the DND sample. The D and G peaks at 1350 and 1581 cm−1, respectively, are
related to the known A1g and E2g modes of the sp2-hybrid bond carbon atom vibrations [57].
In addition to the aforementioned peak located at 1570 cm−1, depending on the parameters
of the DND synthesis process, there is another peak located at 1625 cm−1 in the region
1600–1640 cm−1, which relates to the carbon of the sp2-hybrid bonds [56].

The Raman spectrum of the Cr-DND/MoN coated sample showed a relatively weak C-O
stretching band at 1090 cm−1 and enhanced C-H bending plane vibration at 1439–1462 cm−1.
This indicates the existence of a carbonyl group and a hydrocarbon group on the DND
surface, as reported by other authors [58]. The second peak at 1300 cm−1 corresponds to
the displacement of the sp3-hybridized carbon peak (the diamond phase) at 1322 cm−1 and
can be attributed to the size effect [59]. Furthermore, a peak at 1650 cm−1, which appeared
in the Raman spectrum of the Cr-DND/MoN coated sample, is related to the presence of
sp2-hybridized carbon.

Therefore, the Raman spectrum of the Cr-DND/MoN coated sample proved the
presence of DND with small diamond crystallites and nanodiamonds on the surface with
functional groups.

3.5. Microindentation

For the Cr-DND/MoN coating, the maximum microhardness of 14 ± 1 GPa was
observed for a load of 200 g (the average penetration depth of the diamond indenter was
~2.4 µm), and a microhardness of 12 ± 1 GPa was observed for a load of 100 g (the indenter
penetration was ~1.7 µm). The almost identical microhardness values of the Cr-DND/MoN
coating can be explained by the penetration of the indenter to the hard MoN layer, as the
thickness of the top layers deposited on the MoN layer shown in Figure 1, was on average
~1.0 µm. The studies carried out proved that the synthesized coatings of γ-Mo2N at a
nitrogen pressure of 0.4 Pa on HSS substrates had a hardness of 3372 ± 100 kg/mm2 [53].
When obtaining the CrN and γ-Mo2N phases of the MoN/CrN coating with a cubic lattice,
a maximum hardness of 35.5 GPa was observed [22].

The maximum microhardness of 16.2 ± 1.8 GPa at a load of 100 g (average penetration
depth of the indenter—about 1.5 µm) was observed for the Cr-DND coating deposited on a
hard alloy substrate (WC–3 wt.% Co) of knife mills from the Leitz company, having the
microhardness of 21 ± 2 GPa [40].

The work of Vinokurov [52] investigated the physico-mechanical properties of chromium-
nanodiamond CECs (NDs) deposited from Cr(III)-based electrolytes, and it was shown
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that the microhardness of the coatings increases from 710 ± 41 HV (pure chromium) to
954 ± 40 HV (CECs) with the introduction of nanodiamond particles into the chromium
electrolyte at a concentration of 20 g/L. Furthermore, it was shown that the optimum
amount of nanodiamonds in the Cr-DND CECs, at which a maximum of microhardness of
the precipitates was observed, is 5.6 wt.%. Moreover, it was also shown that the optimal
amount of nanodiamonds in the Cr-DND CEC, at which a maximum of microhardness
of the precipitates was observed, is 5.6 wt.%. In this case, the optimal concentration of
nanodiamond particles in Cr(III)-based electrolytes is 17 g/L.

The EDS spectrum of the surface of the Cr-DND/MoN coating showed that the Cr-
DND top layer, which was formed using a nanodiamond solution with a concentration of
2–5 g/L, consisted of 1.3 ± 0.2 wt.% carbon (Table 1).

From the results discussed above, the microhardness of the Cr-DND/MoN coating
increases with the amount of nanodiamonds in the coating.

3.6. Scratch Test Results

The adhesion properties of the coating are related to all the interatomic interactions
at the interface between the coating and the substrate materials, including the elastic
properties of the coating and the substrate, the fracture strength, the distribution of pores
and other defects in the material, the loading conditions and the frictional behavior [60]. It
is known that the adhesion strength is defined as a measure of the coating’s resistance to
fracture and can be determined by measuring the critical load Lc.

Using a progressive load for the Cr-DND/MoN coating, we found that the critical
load Lc was about 93 ± 1 N (Figure 8). Furthermore, analysis of the load curve (Figure 8)
and scratch traces (Figures 8 and 9) revealed several stages of coating destruction. Figure 8
shows that initially, monotonous penetration of the indenter into the coating occurred,
and as the load increased considerably over the short length of the trace, the coating
exhibited strong resistance to the penetration of the indenter. In addition, there was an
almost monotonic dependence of the load value on the short trace length. From the optical
images of the scratch paths (Figure 8), it can be proposed that the main failure modes of the
adhesive are cohesive failure.
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Figure 9. SEM images of the scratch trace on the Cr-DND/MoN coating: (a) at the beginning of the
path; (b) in the middle of the path; (c) at the end of the path.

To further investigate the worn surface of the scratch pattern, SEM observation of the
worn surface of the coating was performed. The content of characteristic elements in the
worn surface was analyzed by EDX.

Figures 9–11 show the surfaces of the wear tracks on the coating and the corresponding
EDX mapping images. As it can be seen in these images, the tested coating exhibited
adhesive wear caused by the transfer of material from one contact surface to the other and
showed uniform wear of the coating with the profile wear track of symmetrical shape and
similar shape of the counter body (Figure 9a–c, magnification 400×). There was no coating
delamination or flaking around the scratch line. The width and shape of the break line in the
coating were fairly uniform. At the beginning and middle of the track (Figure 9a,b), under
a normal load of 5–20 N, cracks propagating perpendicular to the scratch channel were
found inside the scratch channel. A worn surface was taken from a shallow groove inside
the scratch channel. The formation of cracks inside the scratch channel indicates brittle
damage to the coating and substrate duo under the progressive load of the diamond stylus.
The middle and the end of the tracks showed areas of worn surfaces (Figure 9b,c), which
can be attributed to surface grooves and brittle fracture of the protuberances. The surface
furrows are the response to the deformation caused by the penetration of the indenter tip
and its movement over the surface. It can be seen in Figure 9 that the width of the wear
track increased during the scratching process. Scattered wear debris (white particles) was
observed on and next to the wear track (Figure 9c (magnification 1500×)). Studies of the
wear behavior of the (Ti, Mo)N film [61] and the TiCN film [62] showed that the wear
debris accumulated in the scratch path area. The wear debris of the (Ti, Mo)N film was
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mainly composed of Mo and Ti oxides or Fe oxide from the counter body. An increase in
the oxygen content in the finish track of the Cr-DND/MoN coating (Table 2) could be seen
compared to the initial EDX analysis of the coating (Table 1).
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Table 2. The elemental composition at the end of the scratch track of the Cr-DND/MoN coating.

Element Cr C Mo O N Cu W

Concentration,
wt.% 39.9 ± 1.6 5.2 ± 0.7 38.8 ± 1.5 5.9 ± 0.8 2.5 ± 0.4 7.6 ± 1.0 0.1 ± 0.0

Concentration,
at.% 33.85 ± 0.91 19.08 ± 2.86 17.80 ± 0.23 16.29 ± 2.40 7.64 ± 1.13 5.30 ± 0.53 0.02 ± 0.00

From this result, we can conclude that the wear debris in the scratch track of the
coating Cr-DND/MoN consisted of Cr, Cu and Mo oxides.

Figure 10 shows EDX mapping images of the elements C, Cu, Mo and Cr in the
Cr-DND/MoN coating shown in Figure 9c (magnification 400×).

Figure 11a–e reveals EDX mapping image data of the elements (a) C, (b) Cr, (c) Mo,
(d) Cu and (e) W in the Cr-DND/MoN coating shown in Figure 9c (magnification 400×).

It can be seen that the top Cr-DND layer of the Cr-DND/MoN coating in the scratch
channel was considerably destroyed but did not disappear, and the bottom MoN layer on
the substrate was slightly worn away in the Cr-DND/MoN coating presented in Figure 9c
(magnification 400×). It can also be concluded that the penetration depth of the indentor
into the Cr-DND/MoN coating was 1.1–1.6 µm at the end of the scratch track.

The results obtained show that the wear of the scratched Cr-DND/MoN coating does
not lead to its crumbling, but rather to its fracture by the cohesion mechanism. Furthermore,
an analysis of the critical load Lc value and the scratch trace revealed good adhesion strength
of the Cr-DND/MoN coating, higher than the results reported in the literature for coatings
deposited on the WC-Co substrate [44,63].

Figures 10 and 11 also show the presence of spheroidal particles consisting of chromium
and carbon on the surfaces of Cr-DND/MoN coatings, as shown in Figure 5.

4. Conclusions

The combined Cr-DND/MoN coating was prepared by Arc-PVD and electroplating
methods on the wood-cutting knife edges of a mill. It was shown that the Cr-DND/MoN
coating consisted of distinguished layers of Cr-DND (top), Cu (middle) and MoN (bottom).
The thicknesses were measured to be 2.43, 357 and 655 nm for the MoN, Cu and Cr-DND
layers, respectively. Furthermore, the Cr-DND/MoN coating was characterized by distinct
phases: γ-Mo2N phase; α-Mo, α-Cu, Cr and Cr-DND phase; and nanodiamonds.

The MoN layer was found to be a dense structure with columnar growth characteristics.
The observed structure is characteristic of Arc-PVD deposited coatings. In addition, an
increase in the carbon content of the surface of the Cr-DND layer was observed due to
the displacement of non-built nanodiamond agglomerates in the structure of the Cr-DND
layer towards the surface of the coating during its electrodeposition process. The substrate
structure was a crystalline cemented tungsten carbide (WC–3 wt.% Co). The Cr-DND
CEC top layer of the Cr-DND/MoN coating was characterized by inclusion of spheroidal
particles ranging from 1 to 5 µm in diameter that were fairly well dispersed and had some
porosity. The spheroids were formed by agglomerates of nanodiamonds in the Cr-DND
layer of the combined coating.

The microhardness of the Cr-DND/MoN coating was shown to increase with the
concentration of nanodiamonds incorporated in the CEC chromium layer. The upper
microhardness of about 14 ± 1 GPa was measured for the Cr-DND/MoN coating, without
evaluating the maximum microhardness.

The critical load of the Cr-DND/MoN coating was estimated to be approximately
93 ± 1 N. In addition, the results of the scratch tests showed that the layers of the Cr-
DND/MoN coating fractured by the cohesive mechanism. Furthermore, there was no
absolute failure of the coating adhesion due to spalling damage. Furthermore, the critical
load value and the scratch track revealed a rather high value for the adhesion strength of
the Cr-DND/MoN coating with a WC-Co base.
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