Л.Н.Новикова. И.А.Ратьковский

РЕЗУЛЬТАТЫ МАСС-СПЕКТРОМЕТРИЧЕСКОГО ИССЛЕДОВАНИЯ ХЛОРИДОВ 3 d -ЭЛЕМЕНТОВ

Исследования последних лет показали, что молекулярный состав парогазовой фазы многих неорганических соединений и систем на их основе значительно сложнее и многообразнее, чем представлялось ранее.

С этих позиций значительный интерес представляют галоге-

термической стойкостью и высокой летучестью.

Проведенное систематическое масс-спектральное исследование хлоридов 3d-элементов показало, что процессы парообразования сопровождаются полимеризацией (чаще димеризацией) и диспропорционированием с переходом в пар нескольких молекулярных форм.

Таблица 1. Масс-спектры и состав паровой фазы

Соединение	Масс-спектр
ScCl ₃	Sc+, ScC1+, ScC12, ScC13, Sc2C15, Sc3C18
TiCl ₂	Ti ⁺ , TiCl ⁺ , TiCl ₂ ⁺ , TiCl ₃ ⁺ , TiCl ₄ ⁺
VC1 ₃	v ⁺ , vc1 ⁺ , vc1 ⁺ ₂ , vc1 ⁺ ₃ , vc1 ⁺ ₄
VC1 ₂	v^+ , vc^{\dagger} , vc_{12}^+ , vc_{13}^+
CrCl ₂	cr ⁺ , crc1 ⁺ , crc1 ₂ ⁺ , cr ₂ C1 ₃ ⁺ , cr ₃ C1 ₃ ⁺
MnCl ₂	Mn ⁺ , MnC1 ⁺ , MnC1 ₂ ⁺ , Mn ₂ C1 ₃ ⁺
FeCl ₂	Fe ⁺ , FeCl ⁺ , FeCl ⁺ ₂ , Fe ₂ Cl ⁺ ₃
CoCl	Co+, CoC1+, CoC12, Co2C13
NiCl ₂	Ni ⁺ , NiCl ⁺ , NiCl ₂
ZnCl ₂	zn+, znc1+, znc1+, znc1+, zn2C1+3

В табл. 1 приведены масс-спектры и состав паровой фазы клоридов элементов первой вставной декады. Как следует из данных табл. 1, паровая фаза ScCl₃, CrCl₂, MnCl₂, FeCl₂, CoCl₂ и ZnCl₂ содержит димерные молекулы. В случае трихлорида скандия и дихлорида хрома паровая фаза имеет более сложный состав, наряду с димерными молекулами содержится незначительное количество тримера.

Масс-спектрометрическое исследование низших хлоридов титана и ванадия показало, что в эффузионном интервале измерений происходит диспропорционирование исследуемых соединений. Дихлорид титана диспропорционирует на TiCl₄, TiCl₃ и металл, дихлорид ванадия – на трихлорид и металл.

С использованием ряда методических примеров расшифровки масс-спектров со сложным составом пара: применением одно - температурной двойной эффузионной ячейки, снятием темпера - турных зависимостей ионных токов при различной энергии иони-

хлоридов 3d -элементов

Состав паровой фазы $(\operatorname{ScCl}_3), (\operatorname{Sc}_2\operatorname{Cl}_6), (\operatorname{Sc}_3\operatorname{Cl}_9)$ $(\operatorname{TiCl}_3), (\operatorname{TiCl}_4)$ (VCl_4) (VCl_3) $(\operatorname{CrCl}_2), (\operatorname{Cr}_2\operatorname{Cl}_4), (\operatorname{Cr}_3\operatorname{Cl}_6)$ $(\operatorname{MnCl}_2), (\operatorname{Mn}_2\operatorname{Cl}_4)$ $(\operatorname{FeCl}_2), (\operatorname{Fe}_2\operatorname{Cl}_4)$ $(\operatorname{CoCl}_2), (\operatorname{Co}_2\operatorname{Cl}_4)$ (NiCl_2) $(\operatorname{ZnCl}_2), (\operatorname{Zn}_2\operatorname{Cl}_4)$

Таблица 2. Термодинамические характеристики процессов первой вставной декады

Процесс	Kcp	АН° 298, ккал/моль	ΔS ⁰ ₂₉₈ , a. e.
[ScC13] = (ScC13)	870	62,3 ± 1,9	54,5 ± 3,2
2[ScC13] = (ScC1)	870	$76,5 \pm 2,4$	$70,1 \pm 4,2$
2[TiCl ₂] = (TiCl ₄)+[Ti		49,1 + 2,2	
3[TiC12] = 2(TiC13)+[T	-	95,0 ± 3,1	$88,5 \pm 3,4$
2[VC13]= (VC14)+[VC12]		47,1 ± 1,0	$53,5 \pm 1,4$
$3[VC1_2] = 2(VC1_3) + [V]$		158,1 +2,6	110,1 + 3,1
[CrCl2] = (CrCl2)	980	61 ± 2	44 + 2
2[crc1 ₂] = (cr ₂ c1 ₄)	980	69 + 2	46 ± 2
$[MnCl_2] = (MnCl_2)$	789	55,3 ± 1,7	45,7 ± 1,8
[FeCl ₂] = (FeCl ₂)	715	49,0 ±1,6	43,3 ± 1,7
2[FeCl ₂] = (Fe ₂ Cl ₄)	715	$65,6 \pm 2,1$	$60,2 \pm 2,3$
$[\operatorname{CoCl}_2] = (\operatorname{CoCl}_2)$	808	52,4 ± 1,8	44,8 + 2,1.
$[NiCl_2] = (NiCl_2)$	826	53,5 ± 1,3	$44,4 \pm 1,0$
$[ZnCl_2] = (ZnCl_2)$	510	32,2 + 1,2	$36,2 \pm 1,0$

Примечание. х - приведенные к стандартным условиям.

зирующих электронов, снятием зависимостей интенсивностей ионных токов от ионизирующего напряжения – был определен относительный состав паровой фазы исследуемых соединений.

Методом полного изотермического испарения рассчитаны парциальные давления компонентов парогазовой фазы.

На основании сведений о составе и давлении паровой фазы, наклонов температурных зависимостей интенсивных ионных то-ков были рассчитаны термодинамические характеристики процессов сублимации, диспропорционирования и димеризации хлоридов 3d -элементов, приведенные в табл. 2, которые сравнива - ются с некоторыми литературными данными.

$\log P = A - \frac{B}{T}$		Литературные д		данные	
(MM. PT.		Kan	ΔH _T ,	As _T ,	ссыл-
A	В	ср	ккал/моль	a. e.	
12,88	12616	1238	59	50	x[1]
15,35	15220	1238	73	64	[1]
11,29	10183	1150	53,5 ± 1,4	38,5 + 1,8	x[2]
11,50	9881	1150	103,1 + 1,9	83,8 ± 2,8	[2]
13,86	9990	798	38 <u>+</u> 1	$39,6 \pm 0,5$	[3]
13,25	16300				
11,69	13114				
12,50	14695				
12,08	11696	1184	40,01 ± 0,05	$5 27,2 \pm 0,4$	14 [4]
11,60	10291	640	44 ± 3		[5]
15,16	13640	640	56 ± 3	-	[5]
11,59	10883	1113	$36,58 \pm 0,3$	$5 27,60 \pm 0$	
11,80	11276	1088	54,02+0,35		
10,39	6636	600	$33,9 \pm 0,5$	$38,5 \pm 0,$	5 x [6]

На основании сведений о составе и давлении паровой фазы, наклонов температурных зависимостей интенсивностей ионных токов были рассчитаны термодинамические характеристики процессов сублимации, диспропорционирования и димеризации хлоридов 3d-элементов, приведенные в табл. 2, которые сравниваются с некоторыми литературными данными.

Литература

1. Термодинамические свойства хлористого скандия, найденные статическим термодинамическим методом в условиях развитой реакции с кварцем / Л.Д.Поляченок, К.Н.Назаров,

Г.П.Дудчик, О.Г.Полячонок. - Тез. докл. на Седьмой всесоюзн. конф. по калориметрии, 1977, с. 309-312. 2. Поляченок Л.Д., Новиков Г.И., Поляченок О.Г. Термодинами - ческое исследование дихлорида титана. - ЖНХ, 1969, т. 14, с. 867-868. 3. Оранская М.А., Лебедев Ю.С., Перфи - лова И.Л. О диспропорционировании трихлорида ванадия. - ЖНХ, 1961, т. 6, вып. 2, с. 252-260. 4. Орехова С.Е. Термодинамическое исследование парообразных комплексных хлоридов некоторых элементов реакции вставной декады: Автореф. канд. дис. - Минск, 1972. 5.Schoonmaker R.С., Роттет R.F. Mass spectromertic and ther modina mic Study of ferrons chloride vapor. - J. Chem. Phys., 1958, 29, №1, р. 116-120. 6. Поляченок О.Г., Комшилова О.Н. Цирман Г.А. Обустойчивости газообразного субхлорида цинка. - ЖНХ, 1969, т. 14, №7, с. 1117-1118.