И.В.Турлай, доцент

К ВОПРССУ ОБЕСПЕЧЕНИЯ СТАБИЛЬНОСТИ ЛЕСОПРОМЫШЛЕННЫХ СИСТЕМ

The equations for establishing of stable work of timber industrial system are suggested.

Любое лесопромышленное гредприятие (ЛП) является системой, состоящей из необходимого числа объектов (цеха, участка, бригады, машины), поставки и получения материалов и т.д.. Работу ЛП будем считать стабильной, если для выбранного периода Т количество продукции будет не менее планового или установленного по иным мотивам Q.

Количественными параметрами функционирования системы (ЛП) могут быть приняты вероятности работы или простоев объектов (ЛП), длительности рабочего и нерабочего состояний.

Рассмотрим систему (ЛП), состоящую из двух объектов (фаз), в которой продукция первого объекта (I) поступает ко второму (II), на котором производится окончательная продукция. Например, лесосечные работы - I, лесоскладские работы - II.

Между I и II возможно хранение промежуточного полуфабриката (деревья, хлысты, сортименты) в запасах 3_1 объемом M_1 . Для рассматриваемой системы I 3_1 II ее объекты могут находиться в рабочем либо нерабочем состоянии, а сама система в целом - в одном из четырех:

- S₁ I и II работают;
- S_2 I не работает, II работает, используя запас;
- S_3 I работает, не работает II;
- S₄ система в целом не работает, т.к. простаивают I и II.

Схема состояний системы и возможных переходов приведена на рис.1.

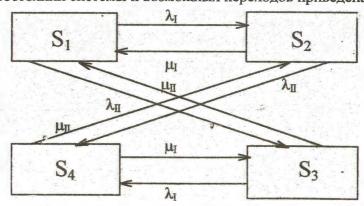


Рис.1. Схема состояний

Характеристиками системы будут: вероятности рабочего и нерабочего состояний объектов І. ІІ - P_{I}^{P} , P_{II}^{P} , P_{II}^{Π} , P_{II}^{Π} , а также вероятности состояний системы в целом: P_{1} , P_{2} , P_{3} , P_{4} .

Общая продолжительность любого из состояний Т, составит

$$T_i = TP_i$$

где Т - общий фонд рабочего времени системы; Р_і- вероятность состояния і.

Стабильность рассматриваемой системы будет обеспечена следующими резервами: производительностью объектов; запасами; их размерами. Здесь не рассматриваются такие факторы стабильности, как финансы, материально-техническое снабжение и т.п.

В состоянии S_2 для I имеют место простои из-за недостаточного количества предметов труда в запасе m для обеспечения работы I в течение t_2 (рис.2). Вером ность P_2^Π такого простоя для состояния S_2 можно определить как

$$P_2^{\Pi} = \sum_{m=0}^{M} P(m) \cdot P(m < \Pi_{II} \cdot t_2),$$

где Пп - производительность П.

$$P(m < \Pi_{II}t_2) = P(t_2 > \frac{m}{\Pi_{II}}) = \sum_{t=\frac{m}{\Pi_{II}}}^{t_{max}} P_2(t).$$

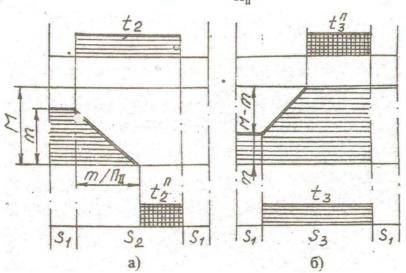


Рис.2. Схема возникновения простоев: а) - для состояния S_2 ; б) - для состояния S_3

Тогда

$$P_{2}^{\Pi} = \sum_{m=0}^{M} \sum_{t=\frac{m}{\Pi_{2}}}^{t_{max}} P(m) P_{2}(t).$$

Во время состояния S_3 в I могут появиться простои с продолжительностью T_2^Π с вероятностью P_3^Π :

$$P_3^{\Pi} = \sum_{m=0}^{M} \sum_{t=\frac{M-m}{\Pi_1}}^{t_{max}} P(m) P_3(t)$$
,

где П_г- производительность I.

Потребные значения резервов для объекта І можно получить из условия

$$\Pi_{\rm I}(T_1+T_3-T_3^{\Pi})\geq Q$$
,

$$\Pi_{\mathrm{I}} \geq \frac{\mathrm{Q}}{\mathrm{T}_1 + \mathrm{T}_3 - \mathrm{T}_3^{\mathrm{\Pi}}}.$$

Аналогично для II

$$\Pi_{\rm II} = \frac{{\rm Q}}{{\rm T}_1 + {\rm T}_2 - {\rm T}_2^{\Pi}},$$

где T1,T2,T3 - соответственно продолжительности состояний S_1,S_2,S_3 . Записанные выше условия образуют систему

$$\begin{cases} f(\Gamma_i, M) \ge Q; & f(\Pi_{II}, M) \ge Q \end{cases}.$$

Приняв в качестве критерия оптимальности затраты на достижение желаемого результата Q для системы, целевая функция будет

$$\coprod = a_1\Pi_1 + a_2\Pi_2 + bM + C \rightarrow min,$$

где a_1 и a_2 - затраты, связанные с увеличением производительности (мощности) для объектов I и II;

b- затраты, связанные с хранением 1 м³ древесины;

с- затраты, связанные с созданием запаса древесины.

Ограничения, со ласно (1), запишутся как

$$\Pi_{\mathrm{I}}(T_1+T_3-T_5^{\Pi}) \ge Q,$$

 $\Pi_{\mathrm{II}}(T_1+T_2-T_2^{\Pi}) \ge Q$

Примем, согласно проведенным нами исследованиям, что продолжительность периодов состояний системы распределена по показательному закону:

$$\begin{split} &P_{I}^{P}(t) = \lambda_{I}e^{-\lambda_{I}t}; \quad P_{I}^{\Pi}(t) = \mu_{I}e^{-\mu_{I}t}; \quad P_{II}^{P}(t) = \lambda_{II}e^{-\lambda_{II}t}; \\ &P_{II}^{P}(t) = \mu_{II}e^{-\mu_{II}t}; \quad \lambda_{I} = \frac{1}{t_{I}}; \quad \lambda_{II} = \frac{1}{t_{II}}; \quad \mu_{I} = \frac{1}{\tau_{I}}; \quad \mu_{II} = \frac{1}{\tau_{II}}; \quad \mu_{II} = \frac{1}{\tau_{II}};$$

где $t_{\rm I}$, $t_{\rm II}$ - среднях продолжительность работы I и II объектов; $\tau_{\rm L}\tau_{\rm II}$ - средняя продолжительность простоев I и II.

Используя схему состояний системы (рис.1), запишем систему дифферен циальных состояний для любого момента времени t:

$$\begin{split} \frac{dP_{I}(t)}{dt} &= -(\lambda_{I} + \lambda_{II})P_{I}(t) + \mu_{I}P_{2}(t) + \mu_{II}P_{3}(t), \\ \frac{dP_{2}(t)}{dt} &= -(\lambda_{II} + \mu_{I})P_{2}(t) + \lambda_{I}P_{I}(t) + \mu_{II}P_{4}(t), \\ \frac{dP_{3}(t)}{dt} &= -(\lambda_{I} + \mu_{II})P_{3}(t) + \lambda_{II}P_{I}(t) + \mu_{I}P_{4}(t), \\ \frac{dP_{4}(t)}{dt} &= -(\mu_{I} + \mu_{II})P_{4}(t) + \lambda_{II}P_{3}(t) + \lambda_{I}P_{3}(t). \end{split}$$

Для установившегося режима, в котором функционируют лесопромышленные системы, $P_i(t) \rightarrow \text{const}$ и $\frac{dP_i(t)}{dt} = 0$.

Из системы уравнений (2) получим систему алгебраических уравнений, из которой находятся выражения для вероятностей состояний

$$P_{1} = \frac{\mu_{I}\mu_{II}}{(\lambda_{I} + \mu_{I})(\lambda_{II} + \mu_{II})}; \quad P_{2} = \frac{\lambda_{I}\mu_{II}}{(\lambda_{I} + \mu_{I})(\lambda_{II} + \mu_{II})};$$

$$P_{3} = \frac{\lambda_{II}\mu_{I}}{(\lambda_{I} + \mu_{I})(\lambda_{II} + \mu_{II})}; \quad P_{4} = \frac{\lambda_{I}\lambda_{II}}{(\lambda_{I} + \mu_{II})(\lambda_{II} + \mu_{II})}.$$

Используя эти выражения, получим формулы для P_2^Π и P_3^Π , которые позволят установить зависимость между Π_I и M, Π_{II} и M и преобразовать целевую функцию Ц.

Ц=
$$a_1f_1(M)+a_2f_2(M)+bM+C\rightarrow min$$
.

Используя полученную целевую функцию, графически устанавливаются оптимальные значения M, Π_I и Π_{II} .