УДК 646.31:666.3

ПОЛУЧЕНИЕ КАЛЬЦИЙ-ФОСФАТНОЙ КЕРАМИКИ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОТЕМПЕРАТУРНОГО САМОРАСПРОСТРАНЯЮЩЕГОСЯ СИНТЕЗА В РАСТВОРЕ

Подсосонная А.Д. (Учреждение образования «Белорусский государственный технологический университет»),

Научный руководитель – кандидат технических наук, Шиманская А.Н. (Учреждение образования «Белорусский государственный технологический университет»)

Установлены особенности формирования структуры и фазового состава материалов в процессе СВС в растворе в системе $Ca(NO_3)_2 - (NH_4)_2HPO_4 - (NH_2)_2CO$. Образцы пористой кальций-фосфатной керамики, синтезированные с использованием полученных материалов, обладали следующим комплексом физико-химических свойств: водопоглощение 13,9–44,8 %; открытая пористость 23,5–55,5 %; кажущаяся плотность 1163–1873 кг/м³; механическая прочность при сжатии 1,0–20,7 МПа.

Введение. Перспективным и малоизученным методом получения наноразмерных фосфатов кальция является самораспространяющийся высокотемпературный синтез в растворе (СВС в растворе). Данный метод предлагает смешивание кальций- и фосфорсодержащих прекурсоров на молекулярном уровне, что позволяет получить более высокую химическую однородность продукта реакции по сравнению с традиционными методами. К преимуществам метода также относится малая продолжительность реакции горения. За один прием можно получить материалы, которые обладают высокой чистотой, однородностью и площадью поверхности.

Фундаментальной научной задачей в рамках исследования является установление влияния соотношения восстановителя и окислителя (ф) на структуру и фазовый состав материалов, синтезированных с помощью СВС в растворе, а также выявление взаимосвязи между составом керамической массы, полученной на основе синтезированных фосфатов кальция, температурновременными параметрами термообработки изделий и особенностями формирования их структуры, фазового состава, физико-химическими свойствами, что позволит получать кальций-фосфатные материалы с комплексом свойств, необходимым для создания имплантатов.

Основная часть. В настоящем исследовании в качестве исходных компонентов для проведения синтеза применялись следующие: тетрагидрат нитрата кальция $Ca((NO_3)_2)\cdot 4H_2O$, х.ч. (ГОСТ 4142); гидроортофосфат аммония $(NH_4)_2HPO_4$, марка А (ГОСТ 8515); 25 % водный раствор аммиака NH_4OH , ос.ч. (ГОСТ 24147); азотная кислота HNO_3 (ГОСТ 4461); карбамид $(NH_2)_2CO$ марка A, высший сорт (ГОСТ 2081).

Растворы готовились следующим образом: в стеклянный стакан объемом 500 мл помещались водные растворы $0.1~\mathrm{M}~\mathrm{Ca(NO_3)_2\cdot 4H_2O},~0.1~\mathrm{M}~\mathrm{(NH_4)_2HPO_4}$ и восстановителя (карбамид) при соотношении восстановителя к окислителю $\phi = 1.0-2.0$. Полученная смесь перемешивалась магнитной мешалкой в течение $10~\mathrm{M}$ ин при комнатной температуре. Далее pH раствора доводился до $9.5~\mathrm{c}$ помощью $\mathrm{NH_4OH},$ после чего в него по каплям добавлялся раствор ($\mathrm{NH_4}$)₂HPO₄. Затем образовавшийся белый осадок растворялся концентрированной $\mathrm{HNO_3}$ (pH 1), прозрачный раствор выдерживался в течение $2~\mathrm{u}$ при температуре $70~\mathrm{o}$ C в сушильном шкафу SNOL $58/350~\mathrm{(}$ Литва). При нагревании полученного раствора до $185-425~\mathrm{o}$ C происходило его воспламенение.

С помощью рентгенофазового анализа (D8 Advance Bruker) установлено, что в системе $Ca(NO_3)_2-(NH_4)_2HPO_4-(NH_2)_2CO$ синтезированы материалы, фазовый состав которых представлен гидроксиапатитом, орто- и пирофосфатом кальция. Как показали электронная микроскопия (JSM-5610LV) и анализатор размеров частиц (Analysette 22 MicroTec Fritsch GmbH), дисперсность полученных фосфатов кальция не зависит от соотношения восстановителя к окислителю, преобладает фракция от 5 до 10 мкм.

На втором этапе исследований получали образцы кальций-фосфатной керамики. После предварительной дезагрегации полученных материалов в планетарной мельнице РМ 100 RETCH (Германия) формовались образцы методом полусухого прессования в виде цилиндров диаметром 12 мм. Прессование осуществлялось с помощью механического пресса Matest C15N (Италия) при давлении 15–20 МПа. Сформованные изделия сушились в сушильном шкафу SNOL 58/350 (Литва), а затем обжигались в электрической лабораторной печи SNOL 1,6,2,5.1/13,5-Y1 (Литва) при температурах 1100–1200 °С. Скорость подъема температуры составляла 120 °С/ч. Выдержка при максимальной температуре – 60 мин.

Визуальная оценка обожженных образцов свидетельствовала, что они характеризуются равномерной окраской белого цвета, текстура материала пористая.

Общая усадка составила 0,41–8,71 %; водопоглощение (ГОСТ 2409) – 13,9–44,8 %; открытая пористость (ГОСТ 2409) – 23,5–55,5 %; кажущаяся плотность (ГОСТ 2409) – 1163–1873 кг/м³; механическая прочность при сжатии (Galdabini Quasar 100, S/N VD11, ГОСТ Р 53065.1) – 1,0–20,7 МПа. Увеличение общей усадки, механической прочности и кажущейся плотности, а также снижение значений водопоглощения и открытой пористости при повышении температуры обжига обусловлено интенсификацией процессов спекания, которое, как известно, осуществляется преимущественно по твердофазовому механизму. Фазовый состав керамики представлен гидроксиапатитом и ортофосфатом кальция.

Выводы. Кальций-фосфатную керамику, полученную на основе материалов, синтезированных с помощью самораспространяющегося высокотемпературного синтеза в растворе можно рекомендовать для проведения дальнейших исследований с целью применения в костной хирургии.