ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2023, том 59, № 2, с. 221–228

ФИЗИКО-ХИМИЧЕСКИЕ ПРОБЛЕМЫ ЗАЩИТЫ МАТЕРИАЛОВ =

УДК 541.124:542.952.6:547.313

АНТИБАКТЕРИАЛЬНЫЕ И КОРРОЗИОННЫЕ СВОЙСТВА КОМПОЗИЦИОННЫХ ЭЛЕКТРОХИМИЧЕСКИХ ПОКРЫТИЙ НА ОСНОВЕ СПЛАВА ОЛОВО-НИКЕЛЬ

© 2023 г. А. В. Пянко^{1, *}, О. А. Алисиенок¹, А. В. Поспелов¹, Е. Ф. Чернявская¹, А. А. Черник¹

¹Белорусский государственный технологический университет, ул. Свердлова, 13а, Минск, 220006 Беларусь

> **e-mail: hanna.pianka@mail.ru* Поступила в редакцию 28.04.2022 г. После доработки 11.05.2022 г. Принята к публикации 25.05.2022 г.

Получены композиционные электрохимические покрытия на основе сплава олово-никель с композитом типа "ядро SiO₂—оболочка TiO₂". Изучены коррозионные свойства покрытий в 3% растворе хлорида натрия. Изучены антибактериальные свойства покрытий по отношению к штаммам *Escherichia coli* ATCC 8739 и *Staphylococcus aureus* ATCC 6538. Установлено, что для придания поверхности антибактериальных свойств минимальная концентрация композита в электролите должна составлять 4 г/дм³.

Ключевые слова: композиционные электрохимические покрытия, сплав олово-никель, композит "ядро SiO₂—оболочка TiO₂", антибактериальность

DOI: 10.31857/S0044185623700274, EDN: SZQBWJ

введение

Диоксид титана и композиты на его основе обладают ярко выраженными фотокаталитическими свойствами [1, 2]. В ряде исследований [3-13] установлено, что введение TiO₂ в состав электрохимических покрытий, придает поверхности повышенную коррозионную стойкость, твердость и антибактериальность. В работах [3, 4] показано влияние диоксида титана на антибактериальные свойства, химический и фазовый состав электрохимического сплава медь-олово. Установлено, что введение TiO₂ в состав электролита до 4 г/дм³ позволяет получать покрытия Cu-Sn. облалающие биоцидными свойствами, особенно в присутствии УФ-излучения. В ряде работ показано, что увеличение содержания диоксида титана приводит к повышению микротвердости цинковых [5] и Zn-Ni [6, 7] покрытий, а также к росту гидрофобных свойств и износостойкости никелевых [8-11] покрытий.

Сплав олово-никель и композиционные покрытия на его основе обладают совокупностью важных физико-химических свойств [12–18], например: твердостью, износостойкостью, коррозионной стойкостью, декоративностью, что позволяет таким покрытиям найти широкое применение в машиностроении, приборостроении и в ряде других областях промышленности.

Электрохимическое формирование сплава олово-никель возможно из комплексных электролитов. Фторидно-хлоридный электролит позволяет получать покрытия сплавом с содержанием олова 55–65 мас. % и никеля – 45–35 мас. %. Введение TiO₂ в электролит осаждения сплава олово-никель позволяет получать покрытия с повышенными антибактериальными свойствами по отношению к бактериям *S. aureus* и *E. coli*, обладающие микротведостью до 439 HV и адгезией 0.65 МПа см⁻² [13].

Композит "ядро SiO₂—оболочка TiO₂" обладает высокой удельной поверхностью и фотокаталитической активностью [19]. Использование его в качестве инертной фазы в составе композиционных электрохимических покрытий позволяет улучшить физико-химические характеристики. Наличие такого композита в электролите уменьшает поляризуемость и смещает область осаждения сплава олово—никель в электроположительную сторону [20].

В данной работе приводится результаты исследований физико-химических и антибактериальных свойств таких покрытий.

	-								~	
	V on	OT/TO DIFOTITI/O	MITTIMOO	OTTIION (OD	TROMOTION	UALITY TV TT	OT OTIOTIZE	OTTELL ATTEL	DODITIV	CDORCTD
	- 2 2 1 1		M P K I K K I		VII. 1111/16-5		я опснки			CRUNCTR
Tee Assurance To	ARCOL	and opnoring	min poo	NI GITTI OUTOUS	1101100100	y Children Alsi	n onormin	COLLY TITLETTY	POOLEDIA	VDVIVID

Штамм микроорганизма	Характеристика	Источник
1	2	3
Escherichia coli (E. coli ATCC 8739)	Грамотрицательные прямые палочки. Факультативные анаэробы. Оптимальная температура 37°С	Коллекция кафедры биотехнологии БГТУ
Staphylococcus aureus (St. aureus ATCC 6538)	Грамположительные неподвижные сферические клетки. Неспорообразующие. Факультативные анаэробы. Опти- мальная температура 37°С	Коллекция кафедры биотехнологии БГТУ

МЕТОДИКА ЭКСПЕРИМЕНТА

Сплав олово-никель и композиционные электрохимические покрытия на его основе осаждали на поверхность медной фольги из фториднохлоридного электролита, согласно методике [20] при температуре 70°С и плотности тока 1 А/дм². Толщина покрытий составляла 10 мкм. Концентрация композита "ядро SiO₂—оболочка TiO₂" в электролите осаждения композиционного электрохимического покрытия составляла 2-6 г/дм³.

Композит "ядро SiO₂/оболочка TiO₂" синтезировали в соответствии с методикой [19].

Шероховатость покрытий определяли профилографом-профилометром "Абрис ПМ7" при отсечке 0.8 мм.

Элементный состав покрытий определяли методом энергодисперсионного рентгеновского микроанализа (EDX) с использованием системы химического микрорентгеноспектрального анализа EDX JED-2201.

Фазовый состав покрытий определяли методом рентгенофазового анализа (РФА) на дифрактометре Siemens D5000. Съемку рентгенограмм проводили в диапазоне углов $2\Theta = 5^{\circ}-90^{\circ}$ со скоростью 0.07 град/мин. Положение максимумов анализируемых линий измеряли с точностью до ±0.05°.

Все электрохимические исследования проводили в трехэлектродной ячейке с помощью потенциостата Autolab PGSTAT 302N. Вспомогательный электрод — платина, электрод сравнения — хлоридсеребряный. Коррозионной средой являлся 3%ный раствор NaCl. Потенциодинамические поляризационные кривые снимали после выдержки образцов в среде хлорида натрия в течение 15 мин для установления стационарного потенциала.

Для оценки антимикробных свойств покрытий использовали тест-культуры санитарно-показательных бактерий *Escherichia coli* ATCC 8739 и *Staphylococcus aureus* ATCC 6538, описанные в табл. 1.

Антибактериальные свойства композиционных электрохимических покрытий определяли в соответствии с ISO 27447:2009 со следующими изменениями:

1) в физиологический раствор для лучшего смыва добавлен детергент Твин 40 (~0.01%),

2) время облучения УФ-светом снижено до 30 мин.

Для исследований использовали 2 идентичных образца, предварительно обработанных в растворе этанола под действием УФ-излучения в течении 2 ч. Образцы накрывали стерильными пленками и помещали на каждый образец клеточную суспензию с тест-бактериями объемом 0.2 мл.

Один из образцов, засеянных тест-бактериями, помещали под УФ-лампу и облучали при комнатной температуре в течение 30 мин, интенсивность ультрафиолетового излучения ~0.01 мВт/см². Другой образец помещали в стерильную чашку Петри и выдерживали в темноте в закрытой чашке при тех же условиях. По истечении времени образцы переносили из чашек в стерильные полиэтиленовые пакетики, вносили по 10 см³ физиологического раствора с добавлением Твин 40 (концентрация 0.01%) и выдерживали в течении ~10 мин для смыва тест—бактерий. Затем отбирали 0.1 см³ полученной жидкости и высевали методом Коха на питательный агар. Все манипуляции проводили с соблюдением правил асептики.

Засеянные чашки помещали в термостат, для инкубирования в течение 24 ч при температуре 30°С. Производили подсчет количества образовавшихся колоний в чашках и определяли концентрацию живых бактерий в смытой жидкости.

Оценку бактерицидной активности композиционных покрытий (способность обусловливать гибель клеток) оценивали с помощью фактора редукции (FR), который определяли по формуле:

$$FR = \lg(K_1/K_2),\tag{1}$$

Рис. 1. Графическая зависимость содержания SiO₂ и TiO₂ в составе покрытий от концентрации композита "ядро SiO₂/оболочка TiO₂" в электролите, полученная по результатам энерго-дисперсионного анализа.

где K_1 — концентрация жизнеспособных клеток в питательной среде с исследуемым покрытием без УФ-излучения, КОЕ/см³; K_2 — концентрация жизнеспособных клеток в питательной среде с исследуемым покрытием с УФ-излучением, КОЕ/см³.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены результаты энергодисперсионного анализа по содержанию SiO₂ и TiO₂ в зависимости от концентрации композита в электролите. Как для SiO₂, так и для TiO₂ наблюдается экстремальная зависимость с максимумом при концентрации композита в электролите $2 r/дм^3$. При этом содержание SiO₂ и TiO₂ в покрытии составляло 1.8 и 0.31 мас. %, соответственно. Дальнейшее увеличение концентрации композита в электролите до 6 г/дм³ приводит к уменьшению количества SiO₂ и TiO₂ в покрытии до 0.1 и 0.03 мас. % соответственно.

Шероховатость покрытий является одним из основных параметров, определяющих внешний вид, а также другие физико-химические и механические свойства. Как следует из рис. 2 увеличение содержания композита в электролите приводит к получению покрытий с повышенной шероховатостью: показатель R_a увеличивается с 0.254 до 2.469 мкм при концентрации композита "ядро SiO₂—оболочка TiO₂" в электролите 6 г/дм³, а показатели R_z и R_{max} до 6.45 и 16.70 мкм соответственно. Такой рост показателей шероховатости обусловлен включением в состав покрытия частиц композита большего размера.

Рис. 2. Профилограммы поверхности покрытий Sn–Ni с различным содержанием композита "ядро SiO₂/оболочка TiO₂" в электролите ($\Gamma/дm^3$): (a) 0; (б) 2; (b) 4; (г) 6.

На рис. 3 представлены поляризационные кривые катодного и анодного процесса коррозии композиционного покрытия на основе сплава олово-никель в 3% растворе NaCl. Сводные данные коррозионных параметров представлены в табл. 2. Потенциал начала коррозии в 3%-ном растворе NaCl для сплава олово-никель составил 0.09 В. Увеличение содержания композита в электролите до 6 г/дм³ приводит к сдвигу потенциала начала коррозии в электроотрицательную сторону до 0.02 В. Это указывает на депассивацию поверхности. Минимальный ток коррозии наблюдается для покрытия с содержанием композита в электролите "ядро SiO₂-оболочка TiO₂" в количестве 2 г/дм³ и составляет $6.94 \times 10^{-9} \text{ A/см}^2$. Дальнейшие повышение концентрации композита в электролите до 6 г/дм³ приводит к увеличению значений токов коррозии до 1.93×10^{-8} A/см². Это, по всей видимости, связано с изменением фазового состава покрытий (рис. 4), повышенной напряженностью и растрескиванием покрытий [20].

Рис. 3. Потенциодинамические поляризационные кривые катодного и анодного процесса коррозии на поверхности композиционных покрытий в 3% растворе NaCl. Скорость развертки потенциала 1 мB/с.

При отсутствии композита "ядро SiO₂/оболочка TiO₂" в электролите на рентгенограмме (рис. 4) присутствует интенсивный пик при $2\theta = 80^{\circ}$, который характерен для металлического олова. Для покрытий, содержащих в составе электролита осаждения композит, данный пик отсутствует. При увеличении содержания "ядро SiO₂/оболочка TiO₂" в электролите происходит изменение интенсивности основного метастабильного пика NiSn. Предположительно, это связано с небольшим изменением содержания олова, связанного с изменением растворимости [12].

Первичные данные в виде диаграмм Боде, полученных при бестоковом потенциале рабочего электрода (рис. 5а, 5б), показывают, что присутствие композита "ядро SiO₂—оболочка TiO₂" приводит к снижению модуля импеданса межфазной

Рис. 4. Рентгенограммы электрохимических покрытий олово-никель с различным содержанием композита "ядро $SiO_2/oболочка$ TiO_2 " в электролите (г/дм³): (а) 0; (б) 2; (в) 4; (г) 6.

границы во всем частотном диапазоне при увеличении концентрации композита в составе электролита. При этом наблюдается смещение в область низких частот участка импеданса, характеризующего электрохимическую реакцию на электроде.

TADA Co. NI:

таолица 2. Ларактеристик	и коррозионн	oro nponece	а композиц	TOHFIDIA HOK	рытий на ос	пове сплава	511-141, 110-
лученные из анализа поте.	нциодинамиче	еских поляри	изационных	кривых			

КЭП Sn—Ni. Концентрация композита "ядро SiO ₂ /оболочка TiO ₂ " в электролите, г/дм ³	b _a , B	<i>а</i> _а , В	$ b_k $, B	<i>a</i> _k , B	<i>і_{кор},</i> А/см ²	<i>Е</i> _{кор} , В	<i>Е</i> _{стац} , В
0	0.035	0.36	-0.028	-0.145	8.67×10^{-9}	0.09	0.105
2	0.030	0.29	-0.028	-0.179	6.94×10^{-9}	0.06	0.091
4	0.040	0.37	-0.027	-0.154	1.45×10^{-8}	0.06	0.075
6	0.041	0.32	-0.032	-0.248	1.93×10^{-8}	0.02	0.024

Рис. 5. Диаграммы Боде сплава Sn-Ni и КЭП Sn-Ni-"ядро SiO₂-оболочка TiO₂", полученные в 3% растворе NaCl.

Анализ спектров импеданса (рис. 6) проведен при помощи эквивалентной схемы (рис. 7). Использование в эквивалентной схеме элемента постоянной фазы *СРЕ* позволяет моделировать различные типы процессов, протекающих в электрохимической системе, что является преимуществом при описании поведения межфазной границы в широком диапазоне параметров состояния.

Увеличение концентрации композита в электролите уменьшает показатели сопротивления переносу заряда на межфазной границе. Показатель степени n1 элемента CPE_1 лежит в диапазоне 0.62–0.82, что указывает на емкостной характер этого элемента. При введении в электролит ком-

Рис. 6. Диаграммы Найквиста сплава Sn-Ni- и Sn-Ni-"ядро SiO₂-оболочка TiO₂", полученные в 3% растворе NaCl.

позита до 6 г/дм³ n1 изменяется с 0.62 до 0.82 (табл. 3).

Результаты антибактериальной активности исследуемых покрытий по отношению к тесткультуре *E. coli* АТСС 8739 представлены в табл. 4. При повышении концентрации вводимого в электролит композита "ядро-оболочка" антибактериальная активность по отношению к тесткультуре *E. coli* АТСС 8739 возрастает в 15 раз при УФ-облучением и в 1.3 без УФ-облучения.

Факторы редукции образцов рассчитаны согласно формуле (1) и составляют: 1.81, 2.0, 3.0, 3.1 для образцов 1, 2, 3, 4 соответственно. Увеличение бактерицидной активности контрольного образца под действием УФ обусловлено воздействием излучения на суспензию микроорганизмов.

Антибактериальные свойства индуцированных и не индуцированных УФ-излучением композиционных покрытий по отношению к тесткультуре *St. aureus* ATCC 6538 представлены в табл. 5 и на рис. 8.

Рис. 7. Эквивалентная схема электрохимической ячейки для моделирования спектров импеданса. R_s – сопротивление раствора, CPE_1 – элемент постоянной фазы емкостного типа, R_1 – сопротивления переносу заряда на межфазной границе, CPE_2 – элемент постоянной фазы диффузионного типа, R_2 – сопротивление ние диффузии.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 59 № 2 2023

ПЯНКО и др.

	-						
КЭП Sn—Ni. Концентрация композита "ядро SiO ₂ /оболочка TiO ₂ " в электролите, г/дм ³	<i>Rs</i> , Ом см ²	<i>R</i> ₁ , Ом см ²	$Y_1,$ $Om^{-1} cm^{-2} c^n$	<i>n</i> ₁	<i>R</i> ₂ , Ом см ²	$Y_2,$ Om ⁻¹ cm ⁻² c ⁿ	n ₂
0	32.78	2.04×10^{6}	2.48×10^{-6}	0.62	1.57×10^4	6.69×10^{-7}	0.73
2	32.83	3.23×10^{6}	1.13×10^{-5}	0.59	2.37×10^4	5.28×10^{-5}	0.68
4	61.77	3.27×10^{5}	1.78×10^{-5}	0.77	1.85×10^{4}	1.15×10^{-4}	0.89
6	10.07	2.08×10^{5}	1.66×10^{-5}	0.82	1.41×10^{4}	1.1×10^{-6}	0.81

Таблица 3. Параметры эквивалентных схем спектров импеданса для композиционных покрытий покрытий Sn–Ni–"ядро SiO₂/оболочка TiO₂", полученных в 3% NaCl

Таблица 4. Антибактериальная активность образцов по отношению к тест-культуре E. coli ATCC 8739

№ образца	КЭП Sn−Ni.	Концентрация бактериальных клеток С, КОЕ/мл				
	Концентрация композита "ядро SiO ₂ /оболочка TiO ₂ " в электролите, г/дм ³	под УФ облучением	без УФ облучения			
1	0	$4.6 \times 10^2 \pm 2.3 \times 10^1$	$5.3 \times 10^4 \pm 2.7 \times 10^3$			
2	2	$3.5 \times 10^2 \pm 1.4 \times 10^1$	$4.1 \times 10^4 \pm 3.7 \times 10^3$			
3	4	$7.6 \times 10^1 \pm 2.3$	$8.2 \times 10^4 \pm 3.3 \times 10^3$			
4	6	$3.0 \times 10^{1} \pm 1.5$	$3.9 \times 10^4 \pm 2.6 \times 10^3$			

Таблица 5. Антибактериальная ак	ивность образцов по отношению к	тест-бактериям St. aureus ATCC 6538
---------------------------------	---------------------------------	-------------------------------------

№ образца	КЭП Sn-Ni. Концентрация	Концентрация бактериальных клеток С, КОЕ/мл			
	TiO_2 " в электролите, г/дм ³	под УФ облучением	без УФ облучения		
1	0	$8.0 \times 10^3 \pm 4.0 \times 10^2$	$5.3 \times 10^5 \pm 2.7 \times 10^4$		
2	2	$5.0 \times 10^1 \pm 3.0 \times 10^1$	$4.1 \times 10^5 \pm 1.7 \times 10^4$		
3	4	$1.0 \times 10^3 \pm 3.0 \times 10^1$	$8.2 \times 10^5 \pm 4.5 \times 10^4$		
4	6	$4.0 \times 10^{1} \pm 2.4$	$5.9 \times 10^5 \pm 2.8 \times 10^4$		

Таблица 6. Сравнение факторов редукции образцов с нанесенным композиционным покрытием по отношению к тест-бактериям *E. coli* ATCC 8739 и *St. aureus* ATCC 6538

No	КЭП Sn-Ni. Концентрация	Фактор редукции FR			
№ ооразца	в электролите, г/дм ³	<i>E. coli</i> ATCC 8739	St. aureus ATCC 6538		
1	0	1.8	1.8		
2	2	2.0	2.7		
3	4	3.0	3.1		
4	6	3.1	4.2		

Рис. 8. Высевы с композиционных электрохимических покрытий по отношению к тест-бактериям *St. aureus* ATCC 6538.

В ходе исследования установлено, что все образцы композиционных электрохимических покрытий Sn—Ni—"ядро SiO₂/оболочка TiO₂" оказывают сильное воздействие на тест—бактерии и проявляют бактерицидные свойства. Применение УФ-излучения для таких покрытий позволяет на 4 порядка снизить концентрацию микроорганизмов. Фактор редукции образцов Sn—Ni составляет 1.8, что обусловлено действием ультрафиолетового облучения. Факторы редукции для образцов Sn—Ni—"SiO₂—TiO₂" при концентрации композита в электролите 2, 4, 6 г/дм³ составляют: 2.7, 3.1, 4.2 соответственно (табл. 6).

Результаты показывают, что для формирования композиционных электрохимических покрытий на основе сплава олово-никель-"ядро SiO₂-оболочка TiO₂" с высоким биоцидным эффектом (*FR* > 2) необходимо применять электролит с концентрацией композита 4 г/дм³ и выше.

ЗАКЛЮЧЕНИЕ

Таким образом, установлено, что введение композита "ядро SiO_2 —оболочка TiO_2 " в электролит до 6 г/дм³ позволяет получать композиционные электрохимические покрытия с показателем шероховатости 2.47 мкм. Токи коррозии данного покрытия увеличиваются по сравнению с покрытием сплавом олово—никель, что обусловлено напряженностью и растрескиванием покрытия. Для композиционных электрохимических покрытий, осажденных из электролита с содержанием 2 г/дм³ композита "ядро SiO₂—оболочка TiO₂", наблюдается наименьшее значение тока коррозии, равное 6.94×10^{-9} A/см².

Установлено, что все композиционные электрохимические покрытия обладают бактерицидными свойствами по отношению к *E. coli* ATCC 8739 и *St. aureus* ATCC 6538. С увеличением концентрации композита в электролите факторы редукции повышаются. Показано, что при воздействии УФ-излучения на композиционные электрохимические покрытия Sn–Ni–"SiO₂/TiO₂" их антибактериальные свойства повышаются на три–четыре порядка.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Fujishima A., Rao T.N., Tryk D.A.* // J. Photochem. Photobiol., C. 2000. V. 1. № 1. P. 1.
- 2. *Moma J., Baloyi J.* Photocatalysts applications and attributes modified titanium dioxide for photocatalytic applications // London: IntechOpen, 2019. P. 156.
- 3. Kharitonov D.S., Kasach A.A., Sergievich D.S. et al. // Ultrason. Sonochem. 2021. V. 75. P. 105593.
- Kasach A.A., Kharitonov D.S., Wrzesińska A. et al. // Prot. Met. Phys. Chem. Surf. 2020. V. 56. P. 385.
- 5. *Vlasa A., Varvara S., Pop A. et al.* // J. Appl. Electrochem. 2010. V. 40. № 8. P. 1519.
- 6. Camargoa M.K., Tudelab I., Schmidta U. et al. // Electrochim. Acta. 2016. V. 198. P. 287.

- Katamipour A., Farzam M., Danaee I. et al. // Surf. Coat. Technol. 2014. V. 254. P. 358.
- Mozhgan S., Mahdi M., Seyed M.E. // Colloids Surf. A. 2019. V. 573. P. 196.
- Abdel Hamid Z., Refai M., El-kilani R.M. et al. // J. Mater. Sci. 2021. V. 56. № 25. P. 14096.
- Thiemig D., Bund A. // Surf. Coat. Technol. 2008. V. 202. P. 2976.
- Huang S., Hu Y., Pan W. // Surf. Coat. Technol. 2011. V. 205. P. 3872.
- Rosolymou E., Spanou S., Zanella C. et al. // Coatings. 2020. V. 10. P. 775.
- 13. *Pyanko A.V., Sergievich D.S., Chernik A.A. et al.* // Prot. Met. Phys. Chem. Surf. 2021. V. 57. № 1. P. 88.

- 14. Kuznetsov B.V., Vorobyova T.N., Glibin V.P. // Met. Finish. 2013. V. 111. P. 38.
- 15. *Vorobyova T.N., Kudaka A.A.* // Trans. Inst. Met. Finish. 2022. V. 100. № 1. P. 36.
- 16. Шеханов Р.Ф. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. № 10. С. 75.
- 17. Subramanian B., Mohan S., Jayakrishnan S. // J. Appl. Electrochem. 2007. V. 37. P. 219.
- Jimenez H., Gil L., Staia M.H. et al. // Surf. Coat. Technol. 2008. V. 202. P. 2072.
- 19. Murashkevich A.N., Lavitskaya A.S., Alisienok O.A. et al. // Inorg. Chem. 2009. V. 45. № 10. P. 1146.
- 20. Пянко А.В., Алисиенок О.А., Кубрак П.Б. и др. // Электрохимия. 2022. Т. 58. № 5. С. 234.