СТАТИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ И АМПЛИТУДНЫХ ХАРАКТЕРИСТИК ЭНЕРГИИ ОБРАЗОВАНИЯ ФЛУКТУАЦИЙ В НАНОРАЗМЕРНЫХ СИСТЕМАХ

Разработанный ранее двухуровневый статистический метод описания свойств молекулярных систем в данной работе применяется для исследования энергии образования элементарных флуктуаций поля плотности в системе с межмолекулярным взаимодействием Леннард-Джонса. Существуют несколько методов изучения флуктуаций плотности в состоянии термодинамического равновесия.

Один из них – это хорошо известная феноменологическая флуктуационная теория фазовых переходов [1], основанная на использовании эффективного гамильтониана Ландау – Лифшица для большого термодинамического потенциала $\Omega = F - \mu N$ [2]. Эта теория развита в двух направлениях, первое из которых связано с разложением гамильтониана по степеням параметра порядка в градиентном приближении, а второе – с разложением в ряд Фурье по пространственным гармоникам с различными волновыми числами и амплитудами.

Другим альтернативным направлением в теоретическом изучении флуктуаций плотности является предложенный ранее статистический подход на основе статистического выражения для потенциала Ω, полученного в рамках двухуровневого метода.

В результате сформулирована и опубликована [3] идея о принципиальной возможности сокращенного статистического описании термодинамических флуктуаций с последующим введением цепочки коррелятивных функций W для ансамбля взаимодействующих элементарных флуктуаций плотности (ЭФП), которые возникают случайным образом на фоне однородной макроскопической системы с заданными термодинамическими параметрами. Для этого введены эффективные потенциалы взаимодействия одиночных ЭФП со средой ($\Psi(x_i)$) и друг с другом (для двух флуктуаций – $\Psi(x_i, x_j)$, трех и так далее).

Следовательно потенциал Ω ансамбля ЭФП представляется в виде разложения по неприводимым эффективным потенциалам Ψ:

$$\Omega\{\rho_{i}\} = \Omega\{\rho_{i\delta}\} + \sum_{i=1}^{M} \Psi_{1}(x_{i}) + \sum_{i< j}^{M} \Psi_{2}(x_{i}, x_{j}) + \sum_{k}^{M} \Psi_{3}(x_{i}, x_{j}, x_{k}), \quad (1)$$

где $\Psi_1(x_i) = \tilde{\mathbf{G}}(x_i)$.

$$\Psi_{2}(x_{i}, x_{j}) = \tilde{\Theta}(u_{i}, u_{j}) - \tilde{\Omega}(u_{i}) - \tilde{\Theta}(x_{j}),$$

$$\Psi_{3}(x_{i}, x_{j}, x_{k}) = \tilde{\Theta}(u_{i}, u_{j}, u_{k}) - \tilde{\Theta}(u_{i}, u_{j}) - \tilde{\Theta}(u_{i}, u_{k}) - \tilde{\Theta}(x_{i}, x_{k}).$$
(2)

Два первые дифференциальные уравнения для коррелятивных функций $W_1(x_i)$ и $W_2(x_i, x_j)$ имеют следующий вид:

$$\frac{\partial W_1}{\partial x_i} + \frac{1}{\theta} \frac{\partial \Psi_1}{\partial x_i} + \frac{1}{\theta} \sum \frac{\partial \Psi_2}{\partial x_i} W_2(x_i, x_j) dx_j = 0,$$

$$\frac{\partial W_2}{\partial x_j} + \frac{1}{\theta} \frac{\partial \Psi_2}{\partial x_j} + \frac{1}{\theta} \sum \frac{\partial \Psi_3}{\partial x_j} W_3(x_i, x_j, x_k) dx_k = 0.$$
(3)

Для практической реализации идеи о сокращенном описании поля флуктуаций в среде со средней плотностью n_c используются ЭФП в виде сферических волн с различными амплитудами *x* и волновыми числами *k* [4]:

$$n_s(x,k,r) = n_c + x \frac{\sin(k \cdot r)}{k \cdot r}.$$
(4)

Соответственно на рис. 1 и 2 представлены амплитудные и спектральные характеристики энергии образования ЭФП, полученные с помощью компьютерной программы в системе MathCad.

Из рис. 1 видно, что по мере увеличения волнового числа k минимумы амплитудных зависимостей с отрицательными значениями энергии ЭФП смешаются вначале в сторону больших значений амплитуд x_{p} , а затем начинают смещаться в обратном направлении.

Кривые на рис. 2 указывают на существование таких волн флуктуации плотности, которые соответствуют локальным минимумам энергии Ω, возникающим при выполнении условий, напоминающих

Рисунок 1 – Амплитудные зависимости энергии Ω для ЭФП при разных значениях волновых чисел *k*

Рисунок 2 – Спектральные зависимости энергии Ω для ЭФП при разных значениях амплитуд *x*, соответствующих минимумам амплитудных зависимостей, изображенных на рисунке 1

условия возникновения минимумов интенсивности при интерференции, а именно, если длины волн λ связаны с радиусом *R* наноразмерной системы сферической формы следующими соотношениями:

$$R = 3\lambda_1/2;$$
 $R = 6\lambda_2/2;$ $R = 9\lambda_3/2.$ (5)

В выполненных расчетах безразмерный радиус R = 31,4, что соответствует порядка 15 нм. Тогда $\lambda_1/2=10,5$; $\lambda_2/2=5,25$; $\lambda_2/2=3,5$.

ЛИТЕРАТУРА

1. Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов. –М.: Наука. 1982. –382 с.

2. Ландау Л. Д., Лифшиц Е. Б. Статистическая физика: в 2 ч. – М.: Наука. 1987. – Ч. 1. – 586 с.

3. Narkevich I. I. Phyzica. 112A. – 1982. – P. 167-192.

4. Наркевич И. И. Е. В. Фарафонтова // Труды БГТУ. Сер. 3, Физ.-мат. науки и информатика. – 2022. – № 2 (260). – С. 49-54.

УДК 536.758

Проф. И.И. Наркевич; доц. Е.В. Фарафонтова (БГТУ, г. Минск)

СТАТИСТИЧЕСКИЙ РАСЧЕТ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ АДСОРБЦИИ ИЗ ГАЗОВОЙ ФАЗЫ НА СФЕРИЧЕСКИХ НАНОЧАСТИЦАХ

Для изучения влияния температуры на адсорбцию из газовой фазы на поверхности кристаллических наночастиц используется ранее полученная замкнутая система интегральных и алгебраических урав-