УДК 662.74.314

Е.И. Грушова, А.О. Шрубок, В.М. Дударчик, В.М. Крайко, Н.Б. Асадчий

ТЕРМОХИМИЧЕСКАЯ ПЕРЕРАБОТКА СМЕСЕВЫХ КОМПОЗИЦИЙ НА ОСНОВЕ ГОРЮЧЕГО СЛАНЦА И БУРОГО УГЛЯ БЕЛАРУСИ

Белорусский государственный технологический университет, г. Минск Институт природопользования НАН Беларуси, г. Минск

Исследованы оптимальные условия проведения пиролиза смесевых композиций на основе горючего сланца и бурого угля Беларуси. Изучены физико-химические свойства смолы из сланцеугольной смеси, с помощью ИК-спектроскопии установлено содержание функциональных групп в смолах пиролиза.

Введение

Актуальность использования «сланцевой нефти» взамен традиционного нефтяного сырья подвнутренней добычи «сланцевой нефти» в США иннградской области и Прибалтике - от 80 до

(26% в год) [1]. В мире насчитывается более 48 сланцевых залежей, глубина залегания которых сильно отличается зависимости от региона: в Братверждается стремительным ростом наращивания зилии их добывают открытым способом, в Ле-

[©] Е.И. Грушова, А.О. Шрубок, В.М. Дударчик, В.М. Крайко, Н.Б. Асадчий, 2013

300 метров, в Беларуси — от 64 до 517 метров от поверхности.

Горючие сланцы республики Беларусь, в отличие от прибалтийских, обеднены керогеном, что значительно снижает их ценность как источника получения «сланцевой нефти». В 80-х годах прошлого столетия проводились исследования по их обогащению, однако наличие, в первую очередь, в их составе глинистой составляющей и, как следствие, прочносвязанных органоминеральных веществ, не принесло положительного результата, и работы были приостановлены. Открытие в республике месторождений бурых углей, которые по составу и свойствам близки к сланцам и содержат более 50% органического вещества, позволило поновому взглянуть на эту проблему.

Представляло интерес исследовать и определить оптимальные условия совместного пиролиза бурых углей и горючих сланцев и составы смесевых композиций, обеспечивающих максимальный выход продуктов, в том числе исследование их

свойств.

В данной работе представлены результаты исследования продуктов пиролиза бурых углей, горючих сланцев и их смеси в соотношении 2:8 соответственно.

Экспериментальная часть

Наработка смолы пиролиза производилась на лабораторной установке в стационарных условиях при конечных температурах 550 и 700°С. В табл. 1 приведены данные по выходу продуктов полукоксования образцов бурых углей, горючих сланцев и их смеси при температуре 550°С.

Смолы, полученные при пиролизе горючих ископаемых, анализировали по известной методике [2]: определяли плотность, содержание фенолов, выходы фракций и пека, плотность и показатели преломления фракций смолы и др. Физико-химические свойства смол пиролиза горючих ископаемых представлены в табл. 2.

Результаты и их обсуждение

Согласно данным, представленным в табл. 1

Таблица 1

Материальный баланс пиролиза

Продукты пиролиза	Горючий сланец, W=2,6 %, A°=77,3%		80% горючего сланца+20% бурого угля, W=4,7 %, А ^c =65,0%		Бурый уголь W=12,5%, А ^c =16,7%						
	% на исх.	% на сух.	% на исх.	% на сух.	% на исх.	% на сух.					
550°C											
Жидкие, всего	14,29	12,07	16,29	12,16	25,94	21,68					
Смола	8,76	8,99	8,65	9,07	11,23	12,79					
Подсмольная вода	3,00	3,08	2,94	3,09	2,53	2,88					
Кокс	82,12	84,25	77,41	81,23	54,18	61,69					
Газ	3,59	3,68	6,30	6,61	19,88	22,64					
$700^{\circ}\mathrm{C}$											
Жидкие, всего	13,76	11,47	16,94	12,83	27,06	16,94					
Смола	6,65	6,82	8,65	9,07	10,29	11,72					
Подсмольная вода	4,11	4,65	8,29	3,76	16,76	5,22					
Кокс	82,06	84,24	73,65	77,28	48,41	55,12					
Газ	4,18	4,29	9,41	9,89	24,53	27,94					

Таблица 2 Физико-химические свойства пиролизных смол горючих ископаемых, полученных при 550°C

Показатель	Смола пиролиза бурых углей Житковичского месторождения	Смола пиролиза горючих сланцев Туровского месторождения	Смола пиролиза смеси горючих сланцев (80%) и бурых углей (20%)
Относительная плотность, c_{20}^{20}	0,9529	0,8964	0,9061
Температура н. к., ⁰ С	78	66	73
Содержание не растворяющихся в толуоле веществ, мас.%	0,13	0,08	0,05
Содержание фенолов, мас.%	5,2	3,7	5,7
Зольность пека, мас.%	0,03	0,03	0,04
Фракционный состав, мас.%:			
легкая фракция (н.к. -180° C)	39,4	13,2	22,1
фенольная фракция (180–200°C)	_	5,1	5,7
нафталиновая фракция ($200–227^{0}\mathrm{C}$)		3,6	3,2
поглотительная фракция $(227-270^{0}C)$	9,1	16,4	13,4
антраценовая фракция (270–360°C)	19,3	21,0	20,9
пек	26,2	39,9	33,9

 ${
m Taf}_{
m Лица}$ 3 Относительные значения оптической плотности полос поглощения ($D_x/D_{1600},\ D_x/D_{720}$) по ИК-спектрам смол пиролиза

Смола	D_{x}/D_{1600}			D +D +D /D	
	$D_{2910} + D_{2850}$	$D_{1110} + D_{1720}$	D_{720}	$D_{860}+D_{815}+D_{750}/D_{720}$	
Смола пиролиза бурых углей Житковичского месторождения	10,9	2,06	1,0	1,9	
Смола пиролиза горючих сланцев Туровского	6,1	1,64	0,8	2,0	
месторождения		1,04	0,6	2,0	
Смола пиролиза смеси горючих сланцев (80%) и бурых углей (20%)	5,6	1,52	0,8	2,0	

и 2, смола, полученная при пиролизе бурого угля, по своим характеристикам отличается от смолы, полученной при пиролизе сланцев, а именно: смола пиролиза бурых углей имеет большую плотность, содержит больше легкой фракции, не содержит фенольной и нафталиновой фракций.

В табл. 3 приведены результаты измерений относительной оптической плотности полос поглощения, проведенных согласно [3].

Подсчитанные значения D_x/D_{1600} и D_x/D_{720} свидетельствуют о том, что изменение структурно-группового состава смолы пиролиза смесевой композиции не во всех случаях проходит по правилу аддитивности. Так, смешение сланцев с бурым углем приводит к некоторому снижению кислородсодержащих групп ($D_{1110} + D_{1720}/D_{1600}$), доли С—Н связей в метильных и метиленовых структурах ($D_{2910} + D_{2850}/D_{1600}$). Практически не влияет смешение горючих ископаемых на степень ароматичности ($D_{860} + D_{815} + D_{750}/D_{720}$), долю алкильных структур, содержащих более четырех атомов углерода.

А между тем, смолы пиролиза бурых углей содержат больше кислородсодержащих групп, больше алифатических фрагментов, содержащих С—Н связь в метильных группах ($D_{2910}+D_{2850}/D_{1600}$), в сравнении со смолой пиролиза горючих сланцев.

Выводы

Впервые исследованы физические и химические свойства смолы из сланцеугольной смеси, состав и их характеристики. Установлено, что выход смолы пиролиза смесевой композиции зна-

чительно превосходит выход смол, полученных при пиролизе горючих сланцев или бурых углей. Это обусловлено, в первую очередь, более высоким выходом легкой (бензиновой фракции н.к. — 180°С) фракции. На основе данных ИК-спектроскопии установлено содержание функциональных групп в образцах смолы пиролиза. Показаны незначительные различия в их составе, к примеру, степень ароматичности (наименьшая у смолы углей) и содержание карбонильных групп (наибольшая у смолы углей).

Таким образом, полученные результаты свидетельствуют о перспективе создания технологии совместной термохимической переработки горючих сланцев и бурых углей с получением «сланцевой нефти».

СПИСОК ЛИТЕРАТУРЫ

- 1. Стическая революция // [Электронный ресурс]. 2013. Режим доступа: http://www.energystrategy.ru/press-c/source/Stepanov 11.03.13.pdf. Дата доступа: 17.03.2013.
- 2. *Глузман Л.Д.*, *Эдельман И.И*. Лабораторный контроль коксохимического производства.— М.: Металлургия, 1968. 472 с.
- 3. Петров С. М. Модификаторы полифункционального действия для получения окисленных дорожных битумов с улучшенными свойствами: Автореф. дис...канд. техн. наук: 02.00.13 / Казанский гос. технол. ун-т. Казнь, 2009.

Поступила в редакцию 24.04.2013