AATOPUTMUSALNA U NTPOTPAMMUPOBAHMUE
ALGORITHMIC AND PROGRAMMING

YK 004.4-004.9

A. A. Prihozhy
Belarusian National Technical University

OPTIMIZATION OF PROGRAMMING TEAMS
ON COMPATIBILITY OF PROGRAMMERS

The programming team formation problem has been solved using different optimization criteria: pro-
grammer and programming team competences; required set of skills, productivity of teams, etc. This
paper formulates the problem of optimizing programming teams accounting for pairwise compatibility
of programmers described by a matrix whose elements are changes of the programmer and team runtimes
when two programmers are included in the same team. When the matrix element is positive the runtime
increases, when it is negative the runtime decreases. The problem is formulated as to partition a set of
programmers into a set of teams in such a way that the overall teams’ runtime is minimal. The graph
clique partitioning problem is related to the team formation problem. It maximizes the overall sum of
constant weights of edges located within the cliques. The team formation problem differs because it
searches for a solution by changing the graph edge weights. Both problems are NP-hard. The paper pro-
poses a greedy algorithm of stepwise pairwise merge of programming teams and provides a software for
team optimization. Experimental results show that the algorithm finds partitions of large sets of program-
mers and generates teams which reduce the runtime by up to 36 % compared to the one-programmer
teams and the single team.

Keywords: programmer, compatibility of programmers, team formation problem, project, runtime,
optimization.

For citation: Prihozhy A. A. Optimization of programming teams on compatibility of programmers.
Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no 2 (272), pp. 104-110.
DOI: 10.52065/2520-6141-2023-272-2-15.

A. A. Ilpuxo:xui
benopycckuii HaLMOHANBHBIA TEXHUYECKUI YHUBEPCUTET

ONTUMM3BALNUA TPOTPAMMUCTCKUX KOMAH/|
IO COBMECTUMOCTHU NPOI'PAMMUCTOB

3amaua GpopMUpOBaHKS KOMaH]] IPOrPaMMHUCTOB PEIIaiach ¢ UCIOJIb30BAaHUEM Pa3iIMYHBIX KPUTEPHEB
ONTHMHM3AIMU: KOMIIETEHIIUH IIPOrpaMMHCTa U KOMaH Ibl IIPOrPaMMHUCTOB; TpeOyeMoro Habopa HaBBIKOB,
NIPOU3BOAMTEILHOCTH KOMaHI U 1Ip. B crathe hopMysmpyercs 3aada ONTHMHU3ALUKA KOMaH C y4€TOM
nonapﬂoﬁ COBMCCTUMOCTHU MMPOIrpaMMUCTOB, OIMMCbIBAEMbIX ManML[eﬁ, JJIEMECHTAMH KOTOpOﬁ SABJIIFOTCA
W3MEHEHUs BpeMeH paboThl IPOrPaMMHCTOB ¥ KOMaH IIPH IONAPHOM BKJIIOYEHUH IPOrPaMMHUCTOB B
OJHY KoMaHay. Ecin a5eMeHT MaTpHIibl OJI0KNATENbHBINA, BpeMsi pabOThl yBEJIMYUBACTCSI, €CIIH OTPHU-
LaTeNbHBIN, BpeMs pabOThl YMEHbIIACTCA. 3aada (GOpMyIHPYETCs TaK, YTOOBI pa3AeIUTh MHOXKECTBO
MIPOTPaMMIICTOB Ha MHOKECTBO KOMaHII TaKMM 00pa3oM, 4TOOBI o01Iiee BpeMsi pabOThl KOMaH[ObLIO MH-
HUMaJIbHBIM. 3a/1aua KIMKOBOTO pa3ouenus rpada cszana ¢ 3aiaueii popmupoBanust komana. OHa MakcH-
MHU3HPYET OOIIYI0 CYMMY IMOCTOSIHHBIX BECOB pebep B KiMKax rpada. 3amada GopMHPOBaHUS KOMAH]
OTJIMYAETCs TEM, YTO OHA MILET PEelleHNe, n3MeHsis Beca pedep rpada. Obe 3amaun sBisiroress NP-TpyqHpMH.
B crartbe npeanaraeTcs yxaJHbIN aITOPUTM IIOIIATOBOTO CIMSHHS KOMaH] U pa3padaThIBaeTCs Iporpam-
MHOE o0ecriedeHune JUIsd ONTUMHU3AIMN KOMaH/I. DKCIIepUMEHTAIbHbIE PE3YJIbTaThl [TOKA3aJIH, YTO aJro-
PUTM HaXOJUT pa36HeHyle 6OJ'I])]_IJI/IX MHOKECTB IIPOTrpaMMUCTOB U I'CHEPUPYET KOMaH/Ibl, COKpallaromune
BpeMs1 paboThl 10 36% 10 CPaBHEHHUIO ¢ KOMaHJaMHU M3 OJHOTO MIPOTrPaMMHUCTa M €ANHOIN KOMaHIOMH.

KiaroueBble ciioBa: IpOrpaMMucCT, COBMECTUMOCTD IIPOrpaMMHUCTOB, 3a1a4a (bOpMI/IpOBaHI/IH KOMaH/,
MPOCKT, BPEMs BBIIIOJHCHUS, OIITUMU3AL .

Tpyasl BITY Cepuss3 Ne 2 2023

A. A. Prihozhy

105

Jnsa nutuposanus: Ilpuxoxuit A. A. OnTuMu3anyst IpOrpaMMHUCTCKUX KOMaH[[0 COBMECTHMOCTH
niporpammuctos // Tpyaet BI'TY. Cep. 3. ®uzuko-marematudeckue Hayku 1 nHdopmaruka. 2023. Ne 2 (272).
C. 104-110. DOI: 10.52065/2520-6141-2023-272-2-15 (In English).

Introduction. The problem of allocating pro-
grammers to programming teams has not received
too much attention in the scientific literature. Agile
[1] is a set of values and principles of developing
software and finding solutions over joint efforts of
development teams and customers. Work [1] describes
the process of task allocation as including three mech-
anisms of workflow across teams and five types of
task allocation strategies.

Work [2] emphasizes that a successful software
development team must be made up of competent
developers. Competency being the ability of devel-
opers to carry out a job properly is considered as a
combination of knowledge, skills and attitudes used
to improve performance. The agile team allocation
is a NP-hard problem since it comprises the allocation
of self-organizing and cross-functional teams. Work [2]
presents a hybrid approach based on NSGA-II multi-
objective metaheuristic and Mamdani Fuzzy Inference
Systems to solve the agile team allocation problem.

Agent-based evolutionary methods of optimiza-
tion [3] aim at performing the management of teams.
Papers [4—6] propose tools that increase the produc-
tivity and efficiency of teams working on various pro-
jects. Wrike [4] is a platform that manages projects,
organizes work, enhances collaboration and accel-
erates execution across all departments. Flow [5] is
a modern software for teams, which brings together
tasks, projects, timelines, and conversations.

Work [7] proposes a method of formalization
and evaluation of the programmers’ and programming
teams’ competency. Work [8] solves the problem of
allocating experts to maximum set of programming
teams. Since the problem of distributing programmers
on a set of teams is combinatorial, works [9—11] de-
veloped a genetic-algorithm-based approach to find-
ing problem solutions at different requirements to
programmers’ competences.

This paper considers how the compatibility of
programmers influence the optimization of teams’
runtime. Its contribution is as follows:

1. A matrix of compatibility of programmers is
proposed which allows the evaluation of changes in
the teams’ overall runtime.

2.1t is shown how the changes in the team
counts, sizes and staff influence the teams’ runtime.

3. A greedy algorithm of stepwise pairwise merge
of teams is developed which exploits programmers’
compatibility and minimizes the teams’ runtime.

4. The experimental results obtained show that
the minimum value of teams’ runtime depends on
the features of compatibility matrix and the number
of programmers.

Main part. Modelling compatibility of pro-
grammers in teams. Let P = {p, ..., p»-1} be a set of

n programmers participating in an IT project. Vec-
tor t= (fo, ... t;, ... tr.1) describes the basic runtimes
in days to be spent by the programmers while working
on the project. It does not account the interaction of
programmers within a team.

Let G = {g1...g«} be a set of teams the program-
mers are allocated to. If the programmers are in-
cluded and work in the same team, their runtimes
are to be corrected. The correction depends on the
compatibility of programmers. Matrix dP represents
in percent changes in the programmers’ runtimes.
Its diagonal values are dP;; = t;. Its nondiagonal val-
ues dP;; describe changes in the runtime of program-
mer j caused by programmer i. If dP;; is negative,
the runtime spent by programmer j decreases, if the
value is positive, the runtime increases. The dP ma-
trix describes both values dP;; and dP;;, which are
different in general case. Regarding combinations
of their signs, we consider four situations:

1. Both dP;j and dP;; are negative. It means that
t; and ¢ are reduced due to influence of the p; and p;
programmers each other when, for example, they ex-
change knowledge and experience on technologies
needed for the project.

2. Value of dP;; is negative and value of dP;; is
positive. It means that ¢ is increased and ¢ is de-
creased, which can happen when, for example, pro-
grammer p; transfers knowledge and experience to
programmer p; and spend some time to do it without
getting knowledge and experience in opposite direction.

3. Value of dP;; is positive and value of dPj; is
negative. It means that ¢ is increased and ¢ is de-
creased when programmer p; transfers knowledge and
experience to programmer p; without getting help in
opposite direction.

4. Both dP;; and dPj; are positive. It means that
t; and ¢ are both increased since the p; and p; pro-
grammers are incompatible within one team.

Matrix dT represents programmer runtime changes
in days (may be in months) and is calculated over
matrix dP. Its nondiagonal element dT7j; is

dT, =t,-dP,; /100. (1)

If programmer j is included in team g, its runtime
t; is changed to #(g) that is evaluated as

t(g)=t;+ Y dT;=t,(1+dT,(2)), ()
ieg,i#]
where
dTy(g)= 3 '(dPl.)j /100). 3)
i€g,i#j
The overall runtime 7(g) of the programmers in
team g is

Tpyast BITY Cepuss3 Ne2 2023

106 Optimization of programming teams on compatibility of programmers

T(g)=2t,(g) “4)

iceg
and the overall runtime of set G of teams is

T9=>"T(g).)

geCG

The compatibility of each programmer with all
other programmers can be evaluated when all the
programmers are included in team single = P. In the
team, the changed runtime #(single) of programmer j
is calculated with (2) and is assigned to the matrix
element d7j;. In the paper, we calculate the d7" ma-
trix and carry out the optimization of each team’s
staff, if d7j(g) calculated with (3) is not less than —1.
Since both elements d7;; and d7;; are used simulta-
neously when i and j are included in the same team,
we create a matrix dS where dS;; = dT;; + dT;;, i <J,
and dS;; = 0 otherwise.

To illustrate our optimization model and tech-
nique, we use a set P = {p ... ps} of eight program-
mers and an example matrix dP shown in Fig. 1.
The programmers’ runtimes vary in the range 18.0
to 97.0 days (see matrix principal diagonal), and the
overall runtime is 440 days. The runtime changes are
in the range —19.2% to 18,6%.

] 1 2 3 4 5 6 7
0 300 00 -67 -168 -27 -119 -117 -64
1 -119 180 -114 -156 -l65 -83 92 1.7
2 -11.0 119 720 120 -79% -87 10 54
3 -66 -67 -89 350 186 82 69 -80
dp =
4 116 -62 38 165 890 51 49 162
5 125 130 -102 00 -164 970 165 -20

6 53 -155 -21 103 134 102 580 00

7 -123 -192 37 104 -133 141 -128 410

Fig. 1. Example matrix dP of programmers’ pairwise
runtime changes in percent within one team

Fig. 2 depicts an example d7 matrix that is com-

puted over the dP (Fig. 1) using (1-3) and is a rep-
resentation of team single.

-24 -115 -68 -16

[=]
—
o
o
f=]
[=]
.
o
Lh
o

-147 81 53 0.7

)
(=3}
—
"
[£=]
[£=]
[
Ln
Ln

%]
s
(')
=
—
g
et
—
g
[

-7.0 -84 12 22
3 -20 -12 -64 408 165 80 40 33
4 35 11 27 58 669 350 -28 66
5 -37 23 73 00 -146 1056 96 -08

6 16 -28 -15 36 119 99 611 00

7 -37 35 26 36 -11.8 137

-74 438

Fig. 2. Example matrix d7 of programmers’ runtimes
(days) and pairwise changes of runtime in team single

Tpyasl BITY Cepuss3 Ne 2 2023

The programmers’ runtimes in the team vary in
range —13.8 to 105.6 days, because the runtime
changes vary in range —14.7 to 16.5 days. The over-
all runtime of team single calculated with (4) equals
399.9 days.

Fig. 3 shows an example dS matrix that is com-
puted over the d7 matrix. As many as 18 pairs of pro-
grammers included in the same team reduce the pro-
ject runtime in range —0.3 down to —15.8 days each.
The overall runtime can be decreased by —128.2 days.
Each of rest 10 pairs increases the runtime in range
0.3 to 22.3 days. The overall runtime can be increased
by 88.1 days. The sum of —128.2 + 88.1 =—40.1 days
shows the overall runtime reduction in team single,
which is —9.11 % against the overall runtime of all
one-programmer teams. The vector of runtime changes
of all programmers within team single is Ar™&" =
(-11.2,-4.2,-229,5.8,-22.1, 8.6, 3.1, 2.8). The run-
time of programmers 0, 1, 2 and 4 is decreased,
therefore they have gained from establishing the
team. The runtime of programmers 3, 5, 6 and 7 is
increased, therefore they have lost when included in
the team. As a result, the workload of each program-
mer in team single has been changed: £ = (18.8,
13.8,49.1,40.8, 66.9, 105.6, 61.1, 43.8). In general,
the team has gained in the runtime.

0 1 2 3 4 5 6 T
0 8¢ -36 -81 -79 11 -152 -52 -63
1 138 -61 -67 -158 -58 25 28
2 491 -22 43 -157 03 48
3 408 223 80 76 03
ds =
4 669 -96 9.1 52
5 1056 195 129
6 61.1 -74
7 438

Fig. 3. Matrix dS of pairwise total programmers’
runtime changes (days) in team single

Matrix dT allows the evaluation of a runtime re-
duction potential of each programmer p; included in
team single. The change of the own runtime of the
programmer is

d]-;-awn = Zde,l . (6)
J#i
The change of runtimes of all other program-
mers caused by programmer p; is
oth __
dT" =% dT, ;. (7)

J#L

The overall change associated with programmer
piis dT*" =dT"™" +dT"" . The lower value of d T/,

A. A. Prihozhy

107

the higher potential p; has with respect to reduction
of the overall team runtime.

Table 1 reports the runtime changes each of the
eight programmers can cause. It can be observed
that programmer po has the largest reducing poten-
tial of —45.2 days, and programmer ps has the largest
increasing potential of 25.8 days. The programmers
with the reducing potential must be included in a
programming team first.

Table 1

Influence of compatibility of programmers on

runtime changes

No drevn dreth dr! Priority
0 -11.2 -34.0 —45.2 1
1 —4.2 —34.1 —38.3 2
2 229 -9.0 -31.9 3
3 5.8 15.6 214 7
4 —22.1 19.7 2.4 6
5 8.6 —14.5 —5.9 4
6 3.1 22.7 25.8 8
7 2.8 —6.5 -3.7 5

Formulation of optimization problem. Let Q be
a set of all possible partitioning of set P of program-
mers into a set G of teams. Then we formulate the
optimization problem as where 7 is defined by (5).
Two cases are possible in solving (8): 1) dTij, i #/,
defined by (1) is constant; 2) d7;; is variable. In the
paper, we assume that d7;; is constant. Since dT;;
can be both positive and negative, and the clique
partitioning problem [12, 13] related to (8) is NP-
hard, the problem (8) is also NP-hard. To solve it for
large programmer sets, we propose a heuristic
greedy algorithm of pairwise merge of teams that
gives a maximum runtime reduction at each step.
- G
min = T (®)
Greedy algorithm of stepwise pairwise merge of
teams (GAMT). 1t is described by Algorithm 1. Its
inputs are the set P of programmers, vector ¢ of their
runtimes, and matrix dS of runtime changes. Its out-
puts are the set G of teams and the changed runtime
T(G) accounting for the programmer’s compatibili-
ties. The algorithm starts with n teams each consisting
of a single programmer. The overall runtime of the
teams is the sum of programmer’s basic runtimes.
At every iteration of the while loop, GAMT chooses
apair g’ and g~ of teams whose merge gives a max-
imum AT"" of runtime reduction. The positive value
of AT"" means that the runtime cannot be decreased,
therefore variable go is set to false and the loop op-
eration is over. If AT"" is negative, set G of teams
is reconstructed: teams g’ and g” are merged into
team g and are removed from G, then g is added to
G. The teams’ overall runtime 7(G) is reduced by
AT, Since it is a maximal reduction, the algorithm
is called greedy.

Algorithm 2 called RuntimeChange calculates
the change RC of runtime when merging two teams
g and g;. The compatibility of each programmer v
of team g; with each programmer u of team g; is ac-
counted. The compatibility of all programmers within
team g; and within team g; has been accounted for at
previous iterations of the while loop.

Algorithm 1: Greedy algorithm of stepwise pairwise
merge of teams (GAMT)

Input: A set P = (po...pn1) of programmers
Input: A vector ¢ of programmer basic runtimes
Input: A matrix dS[nxn] of programmer runtime
changes
Output: A set G of programming teams
Output: A runtime 7(G) of programming teams
G— D T(G)« 0 go<« true
fori<—Oton—1do
g 1{py T@) <t
AT(gi)) < 0
G—Gu {gj}
(G)« T(G) + ¢,
while (go) do
go « false
AT 0
forj < 0to |G| —1do
fork<j+1to|G|—1do
Atj <~ RuntimeChange(P, dS, gj, gr)
if AT**' > At; then
AT At g’ «j g’ «k
if AT*" <0 then
g0 < true
gegug”
G (G\{g.g") v {g}
T(G) < T(G) + AT
return G, 7(G)

Algorithm 2: Calculation of runtime change after merg-
ing two teams (RuntimeChange)

Input: A set P = (po...pn1) of programmers
Input: A matrix dS[nxn] of programmer runtime
changes
Input: two teams g; and g of programmers which are
candidates for merging
Output: A change RC of runtime of two teams merged
RC«0
forv e gjdo
for u € g do
if v <u then
RC < RC+dS,,,
else
RC < RC+dS,,
return RC

Tpyast BITY Cepuss3 Ne2 2023

108 Optimization of programming teams on compatibility of programmers

The GAMT algorithm applied to the example set
of programmers has yielded 3 teams consisting of 5,
1 and 2 programmers: G= {{0, 1, 2,4, 5}, {3}, {6, 7} }.
Fig. 4 and Table 2 show that in first team, 9 pairs of
programmers reduce the runtime by —83.1 days, and
only one pair increases it by 1.1 days. Eight pairs of
programmers from different teams have negative
time changes of overall sum —36.6 days, which did
not reduce the runtime. Nine pairs with positive time
changes not included in the same team did not in-
crease the runtime by 87.0 days.

0 1 2 4 5 3 6 7
1] 12e 38 -81 11 -132 79 -32 -63
1 213 61 -158 -58 -67 25 -28
2 544 43 -157 -22 -03 438
4 03 96 223 91 52
T =
5 740 80 195 129
3 350 76 03
6 306 -74
7 41.0

Fig. 4. Matrix TT of teams and their runtimes given by
algorithm GAMT (rows and columns are reordered)

Table 2
Programming teams optimized
by greedy algorithm GAMT
Team 1 2 3 All
Programmers 0,1,2,4,5 3 6,7 0-7
Run-time, day 306 35 99 440
Reduction, day —83.1 0 =74 | -90.5
New runtime, day 222.9 35 91.6 | 349.5
Reduction, % -27.2 0 | =747 | =20.6

Table 3 shows that the changes in runtimes of
programmers of the greedy teams are A£ % =
=(-7.1,3.3,-17.6,0,-38.7,-23.0, 7.4, 0). The ru-
ntime of only one programmer has increased. The re-
sulting runtimes of the programmers are ¥ =
=(22.9,21.3,54.4,35,50.3, 74, 50.6, 41).

Table 3
Comparison in runtime (days) of three allocations
of programmers to teams

Progr. . Team single Teams greed
no% Runtime Time Cﬁange Time gChaIi)ge
0 30 18.8 -11.2 22.9 7.1
1 18 13.8 —4.2 21.3 3.3
2 72 49.1 -22.9 54.4 -17.6
3 35 40.8 5.8 35.0 0.0
4 89 66.9 -22.1 50.3 -38.7
5 97 105.6 8.6 74.0 -23.0
6 58 61.1 3.1 50.6 -7.4
7 41 43.8 2.8 41.0 0.0
All 440 399.9 —40.1 349.5 -90.5

Tpyasl BITY Cepuss3 Ne 2 2023

The greedy teams give the overall runtime re-
duction of —20.6% which is better against —9.11%
of the single team. It should be noted that algorithm
GAMT can be parallelized to handle large sets of
programmers by using methods from [14].

Results. We have developed a software for the op-
timization of programming teams in the C++ language
using Visual Studio 2022 under OS Windows 10. The
experiments were done on Intel Core i7-10700 CPU
processor on various sets P of programmers, vectors ¢
of runtimes and matrices dP of runtime changes.

Fig. 5 compares on 10 runs of the software the over-
all runtimes of teams composed of 30 programmers that
were generated by the greedy GAMT algorithm over the
one-programmer teams and the team single. Since vec-
tor ¢ and matrix dP were different on all 10 runs, the
graphic represented in Fig. 5 using triangles and dash
lines shows different properties of teams single which
can increase the runtime up to 8.9% and decrease it
down to —13.9% compared to the one-programmer
teams. GAMT has generated and optimized 3 to 7 teams
whose runtimes are up to —27.9% and up to —25.3%
lower than the runtimes of corresponding one-
programmer teams and team single.

20,0
100 o

0o @408 e 208 o
,1001 , X, 56,7 4 9 W

A
~20,0 H—k‘\\/—"—‘\‘
-30,0
- -& - Single team

—&— Greedy teams

- @ - Greedy teams count

Fig. 5. Changes in runtime (%) of team single
(triangles) and greedy teams (diamonds) over
one-programmer teams, and greedy teams count
(circles) on 30 programmers vs. 10 runs

10 ° —
(o-guge—g e 3o
® a0 A B i

-10

-20

=30

—-40
- =& - Single —@— Greedy --@--- Teams count

Fig. 6. Changes in runtime (%) of single team
(triangles) and greedy teams (diamonds) against
one-programmer teams, and greedy teams count

(circles) vs. programmer count

A. A. Prihozhy

109

Fig. 6 compares the overall runtimes of one-pro-
grammer teams, single teams, and greedy teams obtained
by GAMT that are composed of 20 to 100 programmers.
The vector ¢ and matrix dP (average value of element
is 5%) were unique for each set of programmers, there-
fore, the single team runtime differed from —4.1% to
3.5% compared to the one-programmer teams. The key
pattern of GAMT is that the greedy teams’ runtime
is decreased over the growth of the set of programmers.
While the number of programmers has been in-
creased from 20 to 100, the greedy teams’ runtime
has been decreased from —15.7% down to —36.1%.
The number of greedy teams has grown from 4 to 7.

Conclusion. The compatibility of programmers
and their ability to efficiently work on a common IT
project is one of the main sources of increasing the
performances of programming teams and decreasing

the teams’ runtime. The paper has proposed to de-
scribe the compatibility with a matrix whose ele-
ments determine how one programmer can decrease
or increase the runtime of another programmer when
both are included in the same team. The matrix allows
to find the number of teams, the size of each team
and to establish the teams staff in such a way as to
reach a maximum reduction of the overall runtime.
The greedy algorithm of stepwise merge of teams
that is developed in the paper and is implemented in
the C++ language is heuristic and finds sub-optimal
solutions. The conducted experiments have shown
the runtime reduction is increased with the growth
of size of the programmer set and is up to 36% for a
set of one hundred programmers. They have also
shown that the reduction depends on the properties
of the compatibility matrix.

References

1. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in
Agile Software Teams. In: Baumeister H., Lichter H., Riebisch M. (eds). Agile Processes in Software Engi-
neering and Extreme Programming. XP 2017. Lecture Notes in Business Information Processing, 2017, vol. 283.
Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6_19.

2. Britto R., Neto P. S., Rabelo R., Ayala W. and Soares T. A hybrid approach to solve the agile team allocation
problem. 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1-8, DOI: 10.1109/CEC.2012.6252999.

3. Rachlin J. [et al.]. A-Teams: An Agent Architecture for Optimization and Decision-Support. In: Miiller J. P.,
Rao A. S., Singh M. P. (eds). Intelligent Agents V: Agents Theories, Architectures, and Languages. ATAL,
1998. Lecture Notes in Computer Science, 1999, vol. 1555. Springer, Berlin, Heidelberg. https://doi.org/

10.1007/3-540-49057-4 17.

4. Wrike. Available at: https://www.wrike.com/ (accessed: 29.03.2023).

5. Flow. Available at: https://www.getflow.com/ (accessed: 29.03.2023).

6. Gutierrez J. H., Astudillo C. A., Ballesteros-Perez P., Mora-Melia D. and Candia-Vejar A. The multiple
team formation problem using sociometry. Computers and Operations Research, 2016, vol. 75, pp. 150—-162.

DOI: https://doi.org/10.1016/j.cor.2016.05.012.

7. Prihozhy A. A., Zhdanouski A. M. Method of qualification estimation and optimization of professional
teams of programmers. Sistemnyy analiz i prikladnaya informatika [System analysis and applied information
science], 2018, no. 2, pp. 4—11. https://doi.org/10.21122/2309-4923-2018-2-4-11 (In Russian).

8. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer
teams. System analysis and applied information science, 2022, no. 1, pp. 40—46. https://doi.org/

10.21122/2309-4923-2022-1-40-46.

9. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams
of programmers. Open Semantic Technologies for Intelligent Systems, Minsk, BSUIR Publ., 2019, pp. 305-310.
10. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer
teams. System analysis and applied information science, 2020, no. 4, pp. 31-38. https://doi.org/10.21122/

2309-4923-2020-4-31-38.

11. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of allocating programmers to groups. Nauka —
obrazovaniyu, proizvodstvu, ekonomike: materialy 13-y Mezhdunarodnoy nauchno-prakticheskoy konfe-
rentsii [Science to education, industry and economics: Proceedings of 13th international scientific and
practical conference]. Minsk, 2015, vol. 1, pp. 286-287 (In Russian).

12. Grotschel M., Wakabayashi Y. A cutting plane algorithm for a clustering problem. Mathematical
Programming, 1989, vol. 45, no. 1, pp. 59-96. https://doi.org/10.1007/BF01589097.

13. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40-50.

14. Prihozhy A. A. Analysis, transformation and optimization for high performance parallel computing.

Minsk, BNTU Publ., 2019. 229 p.

Cnucok JuTepaTypsl

1. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in
Agile Software Teams // Agile Processes in Software Engineering and Extreme Programming H. Baumeister,

Tpyast BITY Cepuss3 Ne2 2023

110 Optimization of programming teams on compatibility of programmers

H. Lichter, M. Riebisch (eds). XP 2017 [et. al.] // Lecture Notes in Business Information Processing. 2017.
Vol. 283. Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6 19.

2. A hybrid approach to solve the agile team allocation problem / R. Britto [et. al.] // 2012 IEEE Congress
on Evolutionary Computation. 2012. P. 1-8. https://doi: 10.1109/CEC.2012.6252999.

3. A-Teams: An Agent Architecture for Optimization and Decision-Support / J. Rachlin [et al.] //
Intelligent Agents V: Agents Theories, Architectures, and Languages, ATAL 1998 /J. P. Miiller, A. S. Rao,
M. P. Singh (eds) // Lecture Notes in Computer Science. 1999. Vol. 1555. Springer. 1999. https://doi.org/
10.1007/3-540-49057-4_17.

4. Wrike. URL: https://www.wrike.com/ (nata oopamenus: 29.03.2023).

5. Flow. URL: https://www. getflow.com/ (nata oopamenus: 29.03.2023).

6. The multiple team formation problem using sociometry / Gutierrez J. H. [et al.] // Computers and
Operations Research. 2016. Vol. 75. P. 150—-162. https://doi.org/10.1016/j.cor.2016.05.012.

7. lpuxoxuit A. A.,)Knanockuii A. M. Meroa OLICHKH KBaTU(UKAIUK W ONTUMH3AIMSI COCTaBa
npodeccnoHanbHBIX TPy MporpaMMUcToB // CHCTEMHBIHN aHann3 ¥ NpuknaaHas nHopmaruka. 2018. Ne. 2.
C. 4-11. https://doi.org/10.21122/2309-4923-2018-2-4-11.

8. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer
teams // System analysis and applied information science. 2022, no. 1, pp. 40—46. https://doi.org/10.21122/
2309-4923-2022-1-40-46.

9. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams
of programmers // Open Semantic Technologies for Intelligent Systems, Minsk, BSUIR, 2019, pp. 305-310.

10. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer
teams // System analysis and applied information science. 2020, no. 4, pp. 31-38. https://doi.org/10.21122/
2309-4923-2020-4-31-38.

11. [lpuxoxuit A. A., KnanoBckuii A. M. ['eHeTHueckuii anroputM pa3OMEHUS] KOJUIEKTHUBA IPO-
rpaMMHCTOB Ha rpymiisl / Hayka — 00pa3zoBaHuIo, IPOU3BOACTBY, SKOHOMHKE: MaTepuaisl 13-it MexmyHap.
Hay4.-nipakT. kKoH). Munck: BHTY, 2015. T. 1. C. 286-287.

12. Grotschel M., Wakabayashi Y. A cutting plane algorithm for a clustering problem // Mathematical
Programming. 1989. Vol. 45, no. 1. P. 59-96. https://doi.org/10.1007/BF01589097.

13. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms // System analysis and applied information science. 2021, no. 3, pp. 40-50.

14. Prihozhy A. A. Analysis, transformation and optimization for high performance parallel computing.
Minsk: BNTU, 2019. 229 p.

Information about the author

Prihozhy Anatoly Alekseevich — DSc (Engineering), Professor, Professor, the Department of Computer
and System Software. Belarusian National Technical University (65, Nezalezhnasti Ave., 220013, Minsk,
Republic of Belarus). E-mail: prihozhy@yahoo.com

HNndopmanus o6 aBTope

Ipuxo:xuii AHaTo/Mii AleKkceeBHY — JOKTOpP TEXHHUECKUX HayK, mpodeccop, mpodeccop kadeapsl
MporpaMMHOro obecneueHus WH(GOPMAIMOHHBIX CHCTEM M TEXHOJOrWi. benmopycckuil HanmoHaIbHBINA
Texanueckuil yauBepeuteT (220013, r. Munck, np. HesaBucumoctn, 65, Pecriyonuka benapycs). E-mail:
prihozhy@yahoo.com

Received 15.04.2023

