
104 Òðóäû ÁÃÒÓ, 2023, ñåðèÿ 3, № 2, ñ. 80–88 

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

ÀËÃÎÐÈÒÌÈÇÀÖÈß È ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ 
ALGORITHMIC AND PROGRAMMING 

 
 
 
 
УДК 004.4-004.9 

А. А. Prihozhy 
Belarusian National Technical University 

OPTIMIZATION OF PROGRAMMING TEAMS  
ON COMPATIBILITY OF PROGRAMMERS 

The programming team formation problem has been solved using different optimization criteria: pro-
grammer and programming team competences; required set of skills, productivity of teams, etc. This 
paper formulates the problem of optimizing programming teams accounting for pairwise compatibility 
of programmers described by a matrix whose elements are changes of the programmer and team runtimes 
when two programmers are included in the same team. When the matrix element is positive the runtime 
increases, when it is negative the runtime decreases. The problem is formulated as to partition a set of 
programmers into a set of teams in such a way that the overall teams’ runtime is minimal. The graph 
clique partitioning problem is related to the team formation problem. It maximizes the overall sum of 
constant weights of edges located within the cliques. The team formation problem differs because it 
searches for a solution by changing the graph edge weights. Both problems are NP-hard. The paper pro-
poses a greedy algorithm of stepwise pairwise merge of programming teams and provides a software for 
team optimization. Experimental results show that the algorithm finds partitions of large sets of program-
mers and generates teams which reduce the runtime by up to 36 % compared to the one-programmer 
teams and the single team. 

Keywords: programmer, compatibility of programmers, team formation problem, project, runtime, 
optimization. 

For citation: Prihozhy А. А. Optimization of programming teams on compatibility of programmers. 
Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no 2 (272), pp. 104–110. 
DOI: 10.52065/2520-6141-2023-272-2-15. 

 
А. А. Прихожий 

Белорусский национальный технический университет 
ОПТИМИЗАЦИЯ ПРОГРАММИСТСКИХ КОМАНД  

ПО СОВМЕСТИМОСТИ ПРОГРАММИСТОВ 
Задача формирования команд программистов решалась с использованием различных критериев 

оптимизации: компетенций программиста и команды программистов; требуемого набора навыков, 
производительности команд и др. В статье формулируется задача оптимизации команд с учетом 
попарной совместимости программистов, описываемых матрицей, элементами которой являются 
изменения времен работы программистов и команд при попарном включении программистов в 
одну команду. Если элемент матрицы положительный, время работы увеличивается, если отри-
цательный, время работы уменьшается. Задача формулируется так, чтобы разделить множество 
программистов на множество команд таким образом, чтобы общее время работы команд было ми-
нимальным. Задача кликового разбиения графа связана с задачей формирования команд. Она макси-
мизирует общую сумму постоянных весов ребер в кликах графа. Задача формирования команд 
отличается тем, что она ищет решение, изменяя веса ребер графа. Обе задачи являются NP-трудными. 
В статье предлагается жадный алгоритм пошагового слияния команд и разрабатывается програм-
мное обеспечение для оптимизации команд. Экспериментальные результаты показали, что алго-
ритм находит разбиение больших множеств программистов и генерирует команды, сокращающие 
время работы до 36% по сравнению с командами из одного программиста и единой командой. 

Ключевые слова: программист, совместимость программистов, задача формирования команд, 
проект, время выполнения, оптимизация. 



A. A. Prihozhy 105 

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

Для цитирования: Прихожий А. А. Оптимизация программистских команд по совместимости 
программистов // Труды БГТУ. Сер. 3. Физико-математические науки и информатика. 2023. № 2 (272). 
С. 104–110. DOI: 10.52065/2520-6141-2023-272-2-15 (In English). 

Introduction. The problem of allocating pro-
grammers to programming teams has not received 
too much attention in the scientific literature. Agile 
[1] is a set of values and principles of developing 
software and finding solutions over joint efforts of 
development teams and customers. Work [1] describes 
the process of task allocation as including three mech-
anisms of workflow across teams and five types of 
task allocation strategies.  

Work [2] emphasizes that a successful software 
development team must be made up of competent 
developers. Competency being the ability of devel-
opers to carry out a job properly is considered as a 
combination of knowledge, skills and attitudes used 
to improve performance. The agile team allocation 
is a NP-hard problem since it comprises the allocation 
of self-organizing and cross-functional teams. Work [2] 
presents a hybrid approach based on NSGA-II multi-
objective metaheuristic and Mamdani Fuzzy Inference 
Systems to solve the agile team allocation problem.  

Agent-based evolutionary methods of optimiza-
tion [3] aim at performing the management of teams. 
Papers [4−6] propose tools that increase the produc-
tivity and efficiency of teams working on various pro-
jects. Wrike [4] is a platform that manages projects, 
organizes work, enhances collaboration and accel-
erates execution across all departments. Flow [5] is 
a modern software for teams, which brings together 
tasks, projects, timelines, and conversations. 

Work [7] proposes a method of formalization 
and evaluation of the programmers’ and programming 
teams’ competency. Work [8] solves the problem of 
allocating experts to maximum set of programming 
teams. Since the problem of distributing programmers 
on a set of teams is combinatorial, works [9−11] de-
veloped a genetic-algorithm-based approach to find-
ing problem solutions at different requirements to 
programmers’ competences.  

This paper considers how the compatibility of 
programmers influence the optimization of teams’ 
runtime. Its contribution is as follows: 

1. A matrix of compatibility of programmers is 
proposed which allows the evaluation of changes in 
the teams’ overall runtime. 

2. It is shown how the changes in the team 
counts, sizes and staff influence the teams’ runtime. 

3. A greedy algorithm of stepwise pairwise merge 
of teams is developed which exploits programmers’ 
compatibility and minimizes the teams’ runtime. 

4. The experimental results obtained show that 
the minimum value of teams’ runtime depends on 
the features of compatibility matrix and the number 
of programmers. 

Main part. Modelling compatibility of pro-
grammers in teams. Let P = {p0, …, pn-1} be a set of 

n programmers participating in an IT project. Vec-
tor t = (t0, … ti, … tn-1) describes the basic runtimes 
in days to be spent by the programmers while working 
on the project. It does not account the interaction of 
programmers within a team.  

Let G = {g1…gk} be a set of teams the program-
mers are allocated to. If the programmers are in-
cluded and work in the same team, their runtimes 
are to be corrected. The correction depends on the 
compatibility of programmers. Matrix dP represents 
in percent changes in the programmers’ runtimes. 
Its diagonal values are dPi,i = ti. Its nondiagonal val-
ues dPi,j describe changes in the runtime of program-
mer j caused by programmer i. If dPi,j is negative, 
the runtime spent by programmer j decreases, if the 
value is positive, the runtime increases. The dP ma-
trix describes both values dPi,j and dPj,i, which are 
different in general case. Regarding combinations 
of their signs, we consider four situations: 

1. Both dPi,j and dPj,I are negative. It means that 
ti and tj are reduced due to influence of the pi and pj 
programmers each other when, for example, they ex-
change knowledge and experience on technologies 
needed for the project.  

2. Value of dPi,j is negative and value of dPj,i is 
positive. It means that ti is increased and tj is de-
creased, which can happen when, for example, pro-
grammer pi transfers knowledge and experience to 
programmer pj and spend some time to do it without 
getting knowledge and experience in opposite direction.  

3. Value of dPi,j is positive and value of dPj,i is 
negative. It means that tj is increased and ti is de-
creased when programmer pj transfers knowledge and 
experience to programmer pi without getting help in 
opposite direction. 

4. Both dPi,j and dPj,i are positive. It means that 
ti and tj are both increased since the pi and pj pro-
grammers are incompatible within one team. 

Matrix dT represents programmer runtime changes 
in days (may be in months) and is calculated over 
matrix dP. Its nondiagonal element dTij is  

 , , / 100.i j i i jdT t dP= ⋅  (1) 

If programmer j is included in team g, its runtime 
tj is changed to tj(g) that is evaluated as 

 ( ),
,

( ) 1 ( )j j i j j j
i g i j

t g t dT t dT g
∈ ≠

= + = + , (2) 

where 

 ( ),
,

( ) / 100 .j i j
i g i j

dT g dP
∈ ≠

=   (3) 

The overall runtime T(g) of the programmers in 
team g is 



106 Optimization of programming teams on compatibility of programmers  

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

 ( ) ( )j
i g

T g t g
∈

=  (4) 

and the overall runtime of set G of teams is 

 ( )G

g G
T T g

∈
=  . (5) 

The compatibility of each programmer with all 
other programmers can be evaluated when all the 
programmers are included in team single = P. In the 
team, the changed runtime tj(single) of programmer j 
is calculated with (2) and is assigned to the matrix 
element dTjj. In the paper, we calculate the dT ma-
trix and carry out the optimization of each team’s 
staff, if dTj(g) calculated with (3) is not less than −1. 
Since both elements dTi,j and dTj,i are used simulta-
neously when i and j are included in the same team, 
we create a matrix dS where dSi,j = dTi,j + dTj,i, i < j, 
and dSi,j = 0 otherwise.  

To illustrate our optimization model and tech-
nique, we use a set P = {p1 … p8} of eight program-
mers and an example matrix dP shown in Fig. 1. 
The programmers’ runtimes vary in the range 18.0 
to 97.0 days (see matrix principal diagonal), and the 
overall runtime is 440 days. The runtime changes are 
in the range –19.2% to 18,6%. 

 

 
Fig. 1. Example matrix dP of programmers’ pairwise 

runtime changes in percent within one team  
 
Fig. 2 depicts an example dT matrix that is com-

puted over the dP (Fig. 1) using (1–3) and is a rep-
resentation of team single.  

 

 
Fig. 2. Example matrix dT of programmers’ runtimes 
(days) and pairwise changes of runtime in team single  

The programmers’ runtimes in the team vary in 
range –13.8 to 105.6 days, because the runtime 
changes vary in range –14.7 to 16.5 days. The over-
all runtime of team single calculated with (4) equals 
399.9 days.  

Fig. 3 shows an example dS matrix that is com-
puted over the dT matrix. As many as 18 pairs of pro-
grammers included in the same team reduce the pro-
ject runtime in range −0.3 down to −15.8 days each. 
The overall runtime can be decreased by −128.2 days. 
Each of rest 10 pairs increases the runtime in range 
0.3 to 22.3 days. The overall runtime can be increased 
by 88.1 days. The sum of −128.2 + 88.1 = −40.1 days 
shows the overall runtime reduction in team single, 
which is −9.11 % against the overall runtime of all 
one-programmer teams. The vector of runtime changes 
of all programmers within team single is Δtsingle = 
(−11.2, −4.2, −22.9, 5.8, −22.1, 8.6, 3.1, 2.8). The run-
time of programmers 0, 1, 2 and 4 is decreased, 
therefore they have gained from establishing the 
team. The runtime of programmers 3, 5, 6 and 7 is 
increased, therefore they have lost when included in 
the team. As a result, the workload of each program-
mer in team single has been changed: tsingle = (18.8, 
13.8, 49.1, 40.8, 66.9, 105.6, 61.1, 43.8). In general, 
the team has gained in the runtime. 

 

 
Fig. 3. Matrix dS of pairwise total programmers’ 

runtime changes (days) in team single 
 
Matrix dT allows the evaluation of a runtime re-

duction potential of each programmer pi included in 
team single. The change of the own runtime of the 
programmer is 

 ,
own

i j i
j i

dT dT
≠

= . (6) 

The change of runtimes of all other program-
mers caused by programmer pi is  

 ,
oth

i i j
j i

dT dT
≠

= . (7) 

The overall change associated with programmer 
pi is all own oth

i i idT dT dT= + . The lower value of 𝑑𝑇௜௔௟௟, 



A. A. Prihozhy 107 

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

the higher potential pi has with respect to reduction 
of the overall team runtime.  

Table 1 reports the runtime changes each of the 
eight programmers can cause. It can be observed 
that programmer p0 has the largest reducing poten-
tial of −45.2 days, and programmer p6 has the largest 
increasing potential of 25.8 days. The programmers 
with the reducing potential must be included in a 
programming team first.  

Table 1  
Influence of compatibility of programmers on 

runtime changes 
No dTiown dTioth dTiall Priority 
0 −11.2 −34.0 −45.2 1 
1 −4.2 −34.1 −38.3 2 
2 −22.9 −9.0 −31.9 3 
3 5.8 15.6 21.4 7 
4 −22.1 19.7 −2.4 6 
5 8.6 −14.5 −5.9 4 
6 3.1 22.7 25.8 8 
7 2.8 −6.5 −3.7 5 

 
Formulation of optimization problem. Let Ω be 

a set of all possible partitioning of set P of program-
mers into a set G of teams. Then we formulate the 
optimization problem as where TG is defined by (5). 
Two cases are possible in solving (8): 1) dTi,j, i ≠ j, 
defined by (1) is constant; 2) dTi,j is variable. In the 
paper, we assume that dTi,j is constant. Since dTi,j 
can be both positive and negative, and the clique 
partitioning problem [12, 13] related to (8) is NP-
hard, the problem (8) is also NP-hard. To solve it for 
large programmer sets, we propose a heuristic 
greedy algorithm of pairwise merge of teams that 
gives a maximum runtime reduction at each step. 

 min G

G
T

∈Ω
=  (8) 

Greedy algorithm of stepwise pairwise merge of 
teams (GAMT). It is described by Algorithm 1. Its 
inputs are the set P of programmers, vector t of their 
runtimes, and matrix dS of runtime changes. Its out-
puts are the set G of teams and the changed runtime 
T(G) accounting for the programmer’s compatibili-
ties. The algorithm starts with n teams each consisting 
of a single programmer. The overall runtime of the 
teams is the sum of programmer’s basic runtimes. 
At every iteration of the while loop, GAMT chooses 
a pair g’ and g” of teams whose merge gives a max-
imum ΔTbest of runtime reduction. The positive value 
of ΔTbest means that the runtime cannot be decreased, 
therefore variable go is set to false and the loop op-
eration is over. If ΔTbest is negative, set G of teams 
is reconstructed: teams g’ and g” are merged into 
team g and are removed from G, then g is added to 
G. The teams’ overall runtime T(G) is reduced by 
ΔTbest. Since it is a maximal reduction, the algorithm 
is called greedy.  

Algorithm 2 called RuntimeChange calculates 
the change RC of runtime when merging two teams 
gj and gk. The compatibility of each programmer v 
of team gj with each programmer u of team gk is ac-
counted. The compatibility of all programmers within 
team gj and within team gk has been accounted for at 
previous iterations of the while loop. 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 1: Greedy algorithm of stepwise pairwise 
merge of teams (GAMT) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: A set P = (p0…pn-1) of programmers 
Input: A vector t of programmer basic runtimes 
Input: A matrix dS[n×n] of programmer runtime 

changes 
Output: A set G of programming teams 
Output: A runtime T(G) of programming teams 

G ← ∅   T(G) ← 0   go ← true 
for i ← 0 to n − 1 do 

gi ← {pi}     T(gi) ← ti  
ΔT(gi) ← 0 
G ← G ∪ {gi}  
T(G) ← T(G) + ti 

while (go) do 
go ← false 
ΔTbest ← 0 
for j ← 0 to |G| − 1 do 

for k ← j + 1 to |G| − 1 do 
Δtj,k ← RuntimeChange(P, dS, gj, gk) 
if ΔTbest > Δtj,k then 

ΔTbest ← Δtj,k   g’ ← j   g” ← k 
if ΔTbest < 0 then 

go ← true 
g ← g’ ∪ g” 
G ← (G \ {g’, g”}) ∪ {g} 
T(G) ← T(G) + ΔTbest 

return G, T(G) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 2: Calculation of runtime change after merg-
ing two teams (RuntimeChange) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: A set P = (p0…pn-1) of programmers 
Input: A matrix dS[n×n] of programmer runtime 

changes 
Input: two teams gj and gk of programmers which are 

candidates for merging 
Output: A change RC of runtime of two teams merged 

RC ← 0 
for v ∈ gj do 

for u ∈ gk do 
if v < u then 

RC ← RC + dSv,u 
else 

RC ← RC + dSu,v 
return RC 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 



108 Optimization of programming teams on compatibility of programmers  

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

The GAMT algorithm applied to the example set 
of programmers has yielded 3 teams consisting of 5, 
1 and 2 programmers: G = {{0, 1, 2, 4, 5}, {3}, {6, 7}}. 
Fig. 4 and Table 2 show that in first team, 9 pairs of 
programmers reduce the runtime by −83.1 days, and 
only one pair increases it by 1.1 days. Eight pairs of 
programmers from different teams have negative 
time changes of overall sum −36.6 days, which did 
not reduce the runtime. Nine pairs with positive time 
changes not included in the same team did not in-
crease the runtime by 87.0 days.  

 

 
Fig. 4. Matrix TT of teams and their runtimes given by 

algorithm GAMT (rows and columns are reordered) 
 

Table 2  
Programming teams optimized  

by greedy algorithm GAMT 

Team 1 2 3 All 
Programmers 0, 1, 2, 4, 5 3 6, 7 0 − 7 
Run-time, day 306 35 99 440 
Reduction, day −83.1 0 −7.4 −90.5 
New runtime, day 222.9 35 91.6 349.5 
Reduction, % −27.2 0 −7.47 −20.6 

 
Table 3 shows that the changes in runtimes of 

programmers of the greedy teams are Δtgreedy = 
= (−7.1, 3.3, −17.6,0, −38.7, −23.0, −7.4, 0). The ru-
ntime of only one programmer has increased. The re-
sulting runtimes of the programmers are tgreedy = 
= (22.9, 21.3, 54.4, 35, 50.3, 74, 50.6, 41).  

 
Table 3  

Comparison in runtime (days) of three allocations  
of programmers to teams 

Progr. 
no. Runtime Team single Teams greedy  

Time Change Time Change 
0 30 18.8 −11.2 22.9 −7.1 
1 18 13.8 −4.2 21.3 3.3 
2 72 49.1 −22.9 54.4 −17.6 
3 35 40.8 5.8 35.0 0.0 
4 89 66.9 −22.1 50.3 −38.7 
5 97 105.6 8.6 74.0 −23.0 
6 58 61.1 3.1 50.6 −7.4 
7 41 43.8 2.8 41.0 0.0 

All 440 399.9 −40.1 349.5 −90.5 

The greedy teams give the overall runtime re-
duction of −20.6% which is better against −9.11% 
of the single team. It should be noted that algorithm 
GAMT can be parallelized to handle large sets of 
programmers by using methods from [14]. 

Results. We have developed a software for the op-
timization of programming teams in the C++ language 
using Visual Studio 2022 under OS Windows 10. The 
experiments were done on Intel Core i7-10700 CPU 
processor on various sets P of programmers, vectors t 
of runtimes and matrices dP of runtime changes.  

Fig. 5 compares on 10 runs of the software the over-
all runtimes of teams composed of 30 programmers that 
were generated by the greedy GAMT algorithm over the 
one-programmer teams and the team single. Since vec-
tor t and matrix dP were different on all 10 runs, the 
graphic represented in Fig. 5 using triangles and dash 
lines shows different properties of teams single which 
can increase the runtime up to 8.9% and decrease it 
down to −13.9% compared to the one-programmer 
teams. GAMT has generated and optimized 3 to 7 teams 
whose runtimes are up to −27.9% and up to −25.3% 
lower than the runtimes of corresponding one-
programmer teams and team single. 

 

  
Fig. 5. Changes in runtime (%) of team single 
(triangles) and greedy teams (diamonds) over  

one-programmer teams, and greedy teams count 
(circles) on 30 programmers vs. 10 runs  

 

 
Fig. 6. Changes in runtime (%) of single team 

(triangles) and greedy teams (diamonds) against  
one-programmer teams, and greedy teams count 

(circles) vs. programmer count  

-30,0
-20,0
-10,0

0,0
10,0
20,0

1 2 3 4 5 6 7 8 9 10

Single team
Greedy teams
Greedy teams count

-40

-30

-20

-10

0

10

20 40 60 80 100

Single Greedy Teams count

– 
– 
– 

– 

– 

– 

– 



A. A. Prihozhy 109 

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

Fig. 6 compares the overall runtimes of one-pro-
grammer teams, single teams, and greedy teams obtained 
by GAMT that are composed of 20 to 100 programmers. 
The vector t and matrix dP (average value of element 
is 5%) were unique for each set of programmers, there-
fore, the single team runtime differed from −4.1% to 
3.5% compared to the one-programmer teams. The key 
pattern of GAMT is that the greedy teams’ runtime 
is decreased over the growth of the set of programmers. 
While the number of programmers has been in-
creased from 20 to 100, the greedy teams’ runtime 
has been decreased from −15.7% down to −36.1%. 
The number of greedy teams has grown from 4 to 7. 

Conclusion. The compatibility of programmers 
and their ability to efficiently work on a common IT 
project is one of the main sources of increasing the 
performances of programming teams and decreasing 

the teams’ runtime. The paper has proposed to de-
scribe the compatibility with a matrix whose ele-
ments determine how one programmer can decrease 
or increase the runtime of another programmer when 
both are included in the same team. The matrix allows 
to find the number of teams, the size of each team 
and to establish the teams staff in such a way as to 
reach a maximum reduction of the overall runtime. 
The greedy algorithm of stepwise merge of teams 
that is developed in the paper and is implemented in 
the C++ language is heuristic and finds sub-optimal 
solutions. The conducted experiments have shown 
the runtime reduction is increased with the growth 
of size of the programmer set and is up to 36% for a 
set of one hundred programmers. They have also 
shown that the reduction depends on the properties 
of the compatibility matrix. 

References 
1. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in 

Agile Software Teams. In: Baumeister H., Lichter H., Riebisch M. (eds). Agile Processes in Software Engi-
neering and Extreme Programming. XP 2017. Lecture Notes in Business Information Processing, 2017, vol. 283. 
Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6_19. 

2. Britto R., Neto P. S., Rabelo R., Ayala W. and Soares T. A hybrid approach to solve the agile team allocation 
problem. 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1−8, DOI: 10.1109/CEC.2012.6252999. 

3. Rachlin J. [et al.]. A-Teams: An Agent Architecture for Optimization and Decision-Support. In: Müller J. P., 
Rao A. S., Singh M. P. (eds). Intelligent Agents V: Agents Theories, Architectures, and Languages. ATAL, 
1998. Lecture Notes in Computer Science, 1999, vol. 1555. Springer, Berlin, Heidelberg. https://doi.org/ 
10.1007/3-540-49057-4_17. 

4. Wrike. Available at: https://www.wrike.com/ (accessed: 29.03.2023). 
5. Flow. Available at: https://www.getflow.com/ (accessed: 29.03.2023). 
6. Gutierrez J. H., Astudillo C. A., Ballesteros-Perez P., Mora-Melia D. and Candia-Vejar A. The multiple 

team formation problem using sociometry. Computers and Operations Research, 2016, vol. 75, pp. 150−162. 
DOI: https://doi.org/10.1016/j.cor.2016.05.012. 

7. Prihozhy A. A., Zhdanouski A. M. Method of qualification estimation and optimization of professional 
teams of programmers. Sistemnyy analiz i prikladnaya informatika [System analysis and applied information 
science], 2018, no. 2, pp. 4−11. https://doi.org/10.21122/2309-4923-2018-2-4-11 (In Russian). 

8. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer 
teams. System analysis and applied information science, 2022, no. 1, pp. 40–46. https://doi.org/ 
10.21122/2309-4923-2022-1-40-46. 

9. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams 
of programmers. Open Semantic Technologies for Intelligent Systems, Minsk, BSUIR Publ., 2019, pp. 305–310. 

10. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer 
teams. System analysis and applied information science, 2020, no. 4, pp. 31–38. https://doi.org/10.21122/ 
2309-4923-2020-4-31-38. 

11. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of allocating programmers to groups. Nauka – 
obrazovaniyu, proizvodstvu, ekonomike: materialy 13-y Mezhdunarodnoy nauchno-prakticheskoy konfe-
rentsii [Science to education, industry and economics: Proceedings of 13th international scientific and 
practical conference]. Minsk, 2015, vol. 1, pp. 286–287 (In Russian). 

12. Grotschel M., Wakabayashi Y. A cutting plane algorithm for a clustering problem. Mathematical 
Programming, 1989, vol. 45, no. 1, pp. 59–96. https://doi.org/10.1007/BF01589097. 

13. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths 
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40–50. 

14. Prihozhy A. A. Analysis, transformation and optimization for high performance parallel computing. 
Minsk, BNTU Publ., 2019. 229 p. 

Список литературы 
1. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in 

Agile Software Teams // Agile Processes in Software Engineering and Extreme Programming H. Baumeister, 



110 Optimization of programming teams on compatibility of programmers  

Òðóäû ÁÃÒÓ   Ñåðèÿ 3   № 2   2023 

H. Lichter, M. Riebisch (eds). XP 2017 [et. al.] // Lecture Notes in Business Information Processing. 2017. 
Vol. 283. Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6_19. 

2. A hybrid approach to solve the agile team allocation problem / R. Britto [et. al.] // 2012 IEEE Congress 
on Evolutionary Computation. 2012. P. 1−8. https://doi: 10.1109/CEC.2012.6252999. 

3. A-Teams: An Agent Architecture for Optimization and Decision-Support / J. Rachlin [et al.] // 
Intelligent Agents V: Agents Theories, Architectures, and Languages, ATAL 1998 / J. P. Müller, A. S. Rao, 
M. P. Singh (eds) // Lecture Notes in Computer Science. 1999. Vol. 1555. Springer. 1999. https://doi.org/ 
10.1007/3-540-49057-4_17. 

4. Wrike. URL: https://www.wrike.com/ (дата обращения: 29.03.2023). 
5. Flow. URL: https://www. getflow.com/ (дата обращения: 29.03.2023). 
6. The multiple team formation problem using sociometry / Gutierrez J. H. [et al.] // Computers and 

Operations Research. 2016. Vol. 75. P. 150−162. https://doi.org/10.1016/j.cor.2016.05.012. 
7. Прихожий А. А., Ждановский А. М. Метод оценки квалификации и оптимизация состава 

профессиональных групп программистов // Системный анализ и прикладная информатика. 2018. №. 2. 
С. 4−11. https://doi.org/10.21122/2309-4923-2018-2-4-11. 

8. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer 
teams // System analysis and applied information science. 2022, no. 1, pp. 40–46. https://doi.org/10.21122/ 
2309-4923-2022-1-40-46. 

9. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams 
of programmers // Open Semantic Technologies for Intelligent Systems, Minsk, BSUIR, 2019, pp. 305–310. 

10. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer 
teams // System analysis and applied information science. 2020, no. 4, pp. 31–38. https://doi.org/10.21122/ 
2309-4923-2020-4-31-38. 

11. Прихожий А. А., Ждановский А. М. Генетический алгоритм разбиения коллектива про- 
граммистов на группы // Наука – образованию, производству, экономике: материалы 13-й Междунар. 
науч.-практ. конф. Минск: БНТУ, 2015. Т. 1. С. 286–287. 

12. Grotschel M., Wakabayashi Y. A cutting plane algorithm for a clustering problem // Mathematical 
Programming. 1989. Vol. 45, no. 1. P. 59–96. https://doi.org/10.1007/BF01589097. 

13. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths 
algorithms // System analysis and applied information science. 2021, no. 3, pp. 40–50. 

14. Prihozhy A. A. Analysis, transformation and optimization for high performance parallel computing. 
Minsk: BNTU, 2019. 229 p. 

Information about the author 
Prihozhy Anatoly Alekseevich − DSc (Engineering), Professor, Professor, the Department of Computer 

and System Software. Belarusian National Technical University (65, Nezalezhnasti Ave., 220013, Minsk, 
Republic of Belarus). E-mail: prihozhy@yahoo.com 

Информация об авторе 
Прихожий Анатолий Алексеевич − доктор технических наук, профессор, профессор кафедры 

программного обеспечения информационных систем и технологий. Белорусский национальный 
технический университет (220013, г. Минск, пр. Независимости, 65, Республика Беларусь). E-mail: 
prihozhy@yahoo.com 

Received 15.04.2023  


