# BY 14402 C1 2011.06.30

# ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

(54)

РЕСПУБЛИКА БЕЛАРУСЬ



НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (19) **BY** (11) **14402** 

(13) **C1** 

(46) **2011.06.30** 

(51) MПК (2009) **C 03C 3/076** 

### БЕССВИНЦОВОЕ СОРТОВОЕ СТЕКЛО

- (21) Номер заявки: а 20090746
- (22) 2009.05.21
- (43) 2010.12.30
- (71) Заявитель: Учреждение образования "Белорусский государственный технологический университет" (ВY)
- (72) Авторы: Бобкова Нинель Мироновна; Крутикова Елена Александровна; Шишканова Людмила Георгиевна (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный технологический университет" (ВҮ)
- (56) ГОЙХМАН В.Ю. и др. Стекло мира. 2007. № 1. С. 54-55.

WO 92/19559 A1.

RU 2334701 C1, 2008.

WO 00/09456 A1.

RU 2304094 C1, 2007.

RU 2325341 C1, 2008.

RU 2320557 C1, 2008.

(57)

Бессвинцовое сортовое стекло, включающее  $SiO_2$ ,  $ZrO_2$ , CaO,  $Na_2O$ ,  $K_2O$  и  $B_2O_3$ , отличающееся тем, что дополнительно содержит BaO при следующем соотношении компонентов, мас. %:

| $SiO_2$           | 63,0-66,0 |
|-------------------|-----------|
| $ZrO_2$           | 4,0-7,0   |
| CaO               | 7,0-10,0  |
| Na <sub>2</sub> O | 8,0-10,0  |
| $K_2O$            | 5,0-7,0   |
| $B_2O_3$          | 0,5-1,5   |
| BaO               | 6.0-10.0  |

Изобретение относится к производству изделий из сортового стекла. Высококачественные сортовые изделия в настоящее время изготавливают из свинцового хрусталя. Однако его производство вызывает ряд экологических проблем в связи с токсичностью оксида свинца. Кроме того, произошло многократное удорожание свинецсодержащего сырья.

Одним из перспективных направлений является разработка составов бессвинцовых сортовых стекол, по своим свойствам близких к свинцовому хрусталю.

Существует ряд работ, направленных на получение так называемого "бессвинцового хрусталя". Известно стекло для изготовления декоративно-художественных изделий и сортовой посуды [1], содержащее, мас. %:  $SiO_2$  40,0-45,0;  $Al_2O_3$  2,0-3,0; ZnO 8,0-10,0; CaO 20,0-24,0; CaO BaO 8,0-10,0;  $CaF_2$  1,0-1,8; CaC Sb2O3 0,1-0,2; CaC TiO2 10,0-14,0.

Недостатком этого стекла является значительное содержание  ${\rm TiO_2}$ , приводящее к появлению желтой окраски, а также присутствие фторсодержащего соединения  ${\rm CaF_2}$ , вредного из-за улетучивания фтора.

К этой же серии титансодержащих стекол относится и хрустальное стекло, предложенное в патенте [2] и имеющее состав, мас. %:  $SiO_2$  54,0-60,0;  $K_2O$  5,0-6,5; CaO 10,0-12,0;

# BY 14402 C1 2011.06.30

 $TiO_2$  14,0-18,0; BaO 8,0-10,0;  $R_2O_3$  5-1,5 (где R - лантаноид). Последний компонент относится к дорогостоящим сырьевым материалам.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является стекло, описанное в статье [3], в которой предлагается следующий состав стекла для высококачественной сортовой посуды:  $SiO_2$  62,0-67,0;  $ZrO_2$  3,0-7,0;  $B_2O_3$  0,1-0,5;  $ZrO_3$  0,1-6,0;  $ZrO_3$  0,0-12,0;  $ZrO_3$  0,1-0,5;  $ZrO_3$  0,1-0,5;  $ZrO_3$  0,1-0,5;  $ZrO_3$  0,1-0,0;  $ZrO_3$  0,1-0,0-12,5.

Недостатками этих стекол являются склонность их к кристаллизации при температурах 850-950 °C, что может ухудшать выработочные свойства при ручной выработке, и пониженное значение показателя преломления.

Задачей предлагаемого изобретения является снижение кристаллизационной способности и повышение оптических характеристик - показателя преломления и дисперсии.

Для решения поставленной задачи предлагается стекло, включающее  $SiO_2$ ,  $ZrO_2$ , CaO,  $Na_2O$ ,  $K_2O$  и  $B_2O_3$ , отличающееся тем, что дополнительно содержит BaO при следующем соотношении компонентов (мас. %):

| $SiO_2$           | 63,0-66,0 |
|-------------------|-----------|
| $ZrO_2$           | 4,0-7,0   |
| CaO               | 7,0-10,0  |
| Na <sub>2</sub> O | 8,0-10,0  |
| $K_2O$            | 5,0-7,0   |
| $B_2O_3$          | 0,5-1,5   |
| BaO               | 6,0-10,0. |

Количественное соотношение указанных компонентов в предлагаемом составе бессвинцового сортового стекла позволяет полностью исключить вероятность кристаллизации стекла и получить стекло с повышенными значениями показателя преломления и коэффициента дисперсии, определяющих оптические свойства стекла.

Стекло варят в газовой тигельной печи при температуре варки 1440-1460 °C.

В качестве сырьевых материалов для приготовления шихты рекомендуются кварцевый песок с содержанием  $Fe_2O_3$  не более 0,015 %, сода, мел, поташ, борная кислота,  $BaCO_3$  и  $ZrO_2$ .

Изобретение поясняется конкретными примерами.

### Пример 1.

Стекло, включающее (мас. %)  $SiO_2$  - 63,  $ZrO_2$  - 6; CaO - 8;  $Na_2O$  - 8;  $K_2O$  - 7;  $B_2O_3$  - 1, BaO - 7, сварено в газовой тигельной печи при температуре 1440-1460 °C. В качестве сырьевых материалов использовали кварцевый песок с содержанием  $Fe_2O_3$  не более 0,015 %, соду, мел, поташ, борную кислоту,  $BaCO_3$  и  $ZrO_2$ .

Остальные примеры выполняются аналогично. Примеры составов предлагаемых стекол приведены в табл. 1.

Таблица 1 **Примеры составов стеко**л

| Компоненты —      | Содержание, мас. % |     |    |           |  |
|-------------------|--------------------|-----|----|-----------|--|
|                   | 1                  | 2   | 3  | Прототип  |  |
| $SiO_2$           | 63                 | 66  | 63 | 62,0-67,0 |  |
| $ZrO_2$           | 6                  | 5   | 4  | 3,0-7,0   |  |
| CaO               | 8                  | 8   | 7  | 8,0-12,0  |  |
| Na <sub>2</sub> O | 8                  | 9   | 8  | 6,5-8,5   |  |
| K <sub>2</sub> O  | 7                  | 5,5 | 7  | 10,0-12,5 |  |
| $B_2O_3$          | 1                  | 0,5 | 1  | 0,1-0,5   |  |
| BaO               | 7                  | 6   | 10 | -         |  |
| ZnO               | -                  | -   | -  | 1,0-6,0   |  |

# BY 14402 C1 2011.06.30

Основные физико-технические свойства стекол по сравнению с прототипом приведены в табл. 2.

Таблица 2

### Свойства стекол

| Have caven average and Yamn           | Показатели свойств       |                          |                          |              |  |
|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------|--|
| Наименование свойств                  | 1                        | 2                        | 3                        | Прототип [3] |  |
| Температура варки, °С                 | 1460                     | 1460                     | 1440                     | 1440-1460    |  |
| Температура начала размягчения, °С    | 610                      | 590                      | 590                      |              |  |
| ТКЛР, 10 <sup>7</sup> К <sup>-1</sup> | 84,3                     | 81,8                     | 85,0                     | 99,2-109,6   |  |
| Плотность, $\kappa \Gamma/M^3$        | 2740                     | 2665                     | 2700                     | 2560-2600    |  |
| Показатель преломления                | 1,573                    | 1,570                    | 1,566                    | 1,537-1,550  |  |
| Дисперсия $\Delta$ n $10^5$           | 1023                     | 1020                     | 1070                     | -            |  |
| Склонность к кристаллизации           | Полностью<br>отсутствует | Полностью<br>отсутствует | Полностью<br>отсутствует | 850-950 °C   |  |

По сравнению с прототипом синтезированные стекла обладают более высокими плотностью и показателем преломления и полным отсутствием склонности к кристаллизации. Температурный коэффициент линейного расширения (ТКЛР) находится в пределах (80-86)  $10^{-7} \, \text{K}^{-1}$ , что соответствует значениям ТКЛР сортовых стекол. По этим показателям предлагаемые стекла близки к богемскому стеклу.

Применение данного стекла позволит сократить производство хрустальных изделий, содержащих токсичный оксид свинца, и обеспечить выпуск высококачественного сортового стекла на основе бессвинцовых составов.

### Источники информации:

- 1. Патент РФ 2311363, МПК С 03С 3/112, 2007.
- 2. Патент РФ 2304095, МПК С 03С 3/095, 2007.
- 3. Гойхман В.Ю., Гомозова В.Г., Воронцова П.И. и др. Циркониевое стекло для производства высококачественной сортовой посуды // Стекло мира. № 1. 2007. С. 54-55.