УДК 537.31/.32; 548.73; 548.736.442.6

#### Е.А. Чижова, М.В. Морозов, С.В. Шевченко, А.И. Клындюк, Я.Ю. Журавлева

Белорусский государственный технологический университет Минск, Беларусь

## СТРУКТУРА И СВОЙСТВА КОМПЛЕКСНОЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ СЛОИСТОГО ФЕРРОКУПРОКОБАЛЬТИТА НЕОДИМА–БАРИЯ

Аннотация. Твердофазным методом синтезирована комплексно замещенная керамика на основе слоистого феррокупрокобальтита, изучено влияние катионного состава на ее кристаллическую структуру, спекаемость и электротранспортные свойства.

# E.A. Chizhova, M.V. Marozau, S.V. Shevchenko, A.I. Klyndyuk, Ya.Yu. Zhuravleva

Belarusian State Technological University Minsk, Belarus

### STRUCTURE AND PROPERTIES OF THE COMPLEX UBSTITUTED DERIVATIVES OF NEODYMIUM–BARIUM FERROCUPROCOBALTITE

**Abstract.** Using solid-state reactions method the complex substituted ceramics based on the layered neodymium–barium ferrocobaltite was synthesized/ Effect of cationic composition on itscristal structure, sinterability? And electrotransport properties was studied/

Кислороддефицитные слоистые двойные перовскиты (СДП) LnBa(M', M'', M''')<sub>2</sub>O<sub>5+8</sub> (Ln – Y, редкоземельный элемент (РЗЭ), M',M'',M'''– 3*d*-металл), обладая комплексом интересных и практически важных свойств, могут рассматриваться в качестве функциональных материалов различного назначения, включая высокотемпературные термоэлектрики, катодные материалы твердооксидных топливных элементов (ТОТЭ), рабочие элементы химических полупроводниковых сенсоров газов, мембраны для сепарации кислорода, катализаторы и др. [1– 3].

Функциональные характеристики фаз LnBa(M',M'',M''')<sub>2</sub>O<sub>5+δ</sub> могут быть улучшены путем введения в них нано- и микрочастиц различной природы, направленного замещения катионов и кислорода,

включая концепцию энтропийной стабилизации, либо создания дефицита катионов в различных позициях кристаллической структуры этих соединений [1,4]. В настоящей работе изучено влияние комплексного замещения неодима самарием и диспрозием, а бария – стронцием и кальцием в NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub> на его структуру и свойства.

образцы Керамические слоистых перовскитов состава  $Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$ NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+ $\delta$ </sub>, И Nd<sub>1/3</sub>Sm<sub>1/3</sub>Dy<sub>1/3</sub>Ba<sub>1/3</sub>Sr<sub>1/3</sub>Ca<sub>1/3</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> получали твердофазным методом из Nd<sub>2</sub>O<sub>3</sub> (HO–Л) (предварительно прокаленного в течение 1 ч при 1273 К), Sm<sub>2</sub>O<sub>3</sub> (СмО-1), Dy<sub>2</sub>O<sub>3</sub> (ДиО-3), BaCO<sub>3</sub> (ч.), SrCO<sub>3</sub> (ч.), CaCO<sub>3</sub> (ч.), Fe<sub>2</sub>O<sub>3</sub> (ос.ч. 2–4), Co<sub>3</sub>O<sub>4</sub> (ч.) и CuO (ч.), которые смешивали в необходимых стехиометрических соотношениях с помощью мельницы Pulverizette 6.0 фирмы Fritsch (материал тиглей и мелющих шаров -ZrO<sub>2</sub>), прессовали в таблетки диаметром 19 мм и высотой 2-3 мм и отжигали на воздухе в течение 40 ч при 1173 К. После отжига образцы измельчали в агатовой ступке, повторно мололи с помощью мельницы Pulverizette 6.0 (Fritsch) и прессовали в бруски размером 5×5×30 мм, которые спекали на воздухе в течение 10 ч при 1273 К. Для измерения электропроводности из спеченной керамики вырезали образцы в форме прямоугольных параллелепипедов размером 4×4×2 мм.

Идентификацию определение образцов И параметров ИХ кристаллической структуры осуществляли при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK<sub>α</sub>-излучение) и ИК-спектроскопии поглощения (ИК Фурье-спектрометр Nexus ThermoNicolet). Содержание в образцах лабильного кислорода (δ) находили с помощью иодометрического титрования [4].

После заключительной стадии синтеза все образцы, в пределах погрешности рентгенофазового анализа, были однофазными (рис. 1а) и имели структуру двойного перовскита. Параметры кристаллической решетки комплекснозамещенных образцов уменьшались относительно базовой фазы (таблица 1).

Таблица 1– Параметры (*a*, *c*), объем (*V*), осевое отношение (*c*/2*a*) кристаллической решетки, индекс кислородной нестехиометрии (δ) слоистых перовскитов на основе NdBaFeCoo 5Cuo 5O5+8

| nepobernitob na venobe i (ubai ecov.se av.se si)                                 |              |              |       |        |      |  |  |  |  |
|----------------------------------------------------------------------------------|--------------|--------------|-------|--------|------|--|--|--|--|
|                                                                                  | <i>a</i> , Å | <i>c</i> , Å | V, Å  | c/2a   | δ    |  |  |  |  |
| NdBaFeCo <sub>0.5</sub> Cu <sub>0.5</sub> O <sub>5+δ</sub>                       | 3.921        | 7.707        | 118.5 | 0.9828 | 0.81 |  |  |  |  |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$                       | 3.904        | 7.672        | 116.9 | 0.9827 | 0.80 |  |  |  |  |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ | 3.859        | 7.626        | 113.5 | 0.9882 | 0.74 |  |  |  |  |



Рис. 1 - Рентгеновские дифрактограммы (*a*) и ИК-спектры поглощения (*б*) порошкообразных образцов твердых растворов NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+ $\delta$ </sub> (*1*), Nd<sub>1/3</sub>Sm<sub>1/3</sub>Dy<sub>1/3</sub>BaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+ $\delta$ </sub> (*2*),

Ha ИК-спектрах поглощения порошкообразного образца NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub> наблюдается ряд полос поглощения С экстремумами при 462–467 см<sup>-1</sup> (v<sub>1</sub>), 580–582 см<sup>-1</sup> (v<sub>2</sub>) и 650 см<sup>-1</sup> (v<sub>3</sub>) (рис. 1,  $\delta$ ), которые, согласно [5], соответствуют валентным ( $v_1$ ,  $v_2$ ) колебаниям (Fe,Co,Cu)–O–(Fe,Co,Cu) связей в слоях [(Fe,Co,Cu)O<sub>2</sub>] ( $v_1$ ) и в направлении, перпендикулярном этим слоям (вдоль оси c) (v<sub>2</sub>), а также колебаниям кислорода слоев [(Fe,Co,Cu)O<sub>2</sub>] в направлении оси *с* (перпендикулярно этим слоям) (v<sub>3</sub>). На ИК-спектрах твердых растворов ярко выражена только линия v2, положение которой практически не меняется, а линии v<sub>1</sub> и v<sub>3</sub> становятся практически незаметными, что согласуется С тем. что образца ЛЛЯ  $Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ осевое соотношение приближается к 1, что говорит о возрастании симметрии его структуры. Кажущуюся плотность  $(\rho_{\kappa})$ керамики вычисляли ПО геометрическим размерам и массе образцов (таблица 2).

Таблица 2 – Рентгенографическая (ρ<sub>т</sub>), кажущаяся (ρ<sub>к</sub>) и относительная (ρ<sub>0</sub>) плотности керамики на основе NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub>

|                                                                                  | $ρ_{peht}$ , $Γ/cM^3$ | $\rho_{\kappa a \kappa}$ , г/см <sup>3</sup> | $ ho_{oth},\%$ |
|----------------------------------------------------------------------------------|-----------------------|----------------------------------------------|----------------|
| NdBaFeCo <sub>0.5</sub> Cu <sub>0.5</sub> O <sub>5</sub>                         | 6.71                  | 6.06                                         | 90.3           |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$                       | 6.92                  | 5.41                                         | 78.2           |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ | 6.40                  | 5.83                                         | 91.1           |



Рис. 2 - Температурные зависимости удельной электропроводности (*a*) и коэффициента термо-ЭДС (б) керамических образцов состава NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> (1), Nd<sub>1/3</sub>Sm<sub>1/3</sub>Dy<sub>1/3</sub>BaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+8</sub> (2),

Как видно из данных таблицы 2, спекаемость образцов с замещением только неодима заметно ухудшается, а одновременно неодима и бария – несколько возрастает.

Электропроводность ( $\sigma$ ) и термо-ЭДС (S) спеченной керамики измеряли на воздухе в интервале температур 300–1100 К. Как видно из рис. 2, a,  $\delta$ , изученные твердые растворы являются полупроводниками ( $\partial\sigma/\partial T > 0$ ) p-типа (S > 0), характер электропроводности которых изменяется на металлический ( $\partial\sigma/\partial T < 0$ ) вблизи  $T_{max} = 720-1033$  К, что сопровождается изменением характера температурной зависимости коэффициента их термо-ЭДС (от  $\partial S/\partial T < 0$  при  $T < T_{min}$  до  $\partial S/\partial T > 0$  при  $T > T_{min}$ ) и вызвано выделением из структуры этих слоистых оксидов лабильного кислорода (таблица 3).

Таблица 3– Значения удельной электропроводности при комнатной температуре (озоо), максимальной электропроводности (отмах), минимального значения коэффициента термо-ЭДС (Smin), температур экстремумов на температурных зависимостях удельной электропроводности и коэффициента термо-ЭДС (Tmax, Tmin), в керамических образцах на основе

|                                                                                  | σ300, | $\sigma_{max}$ , | $T_{max}$ , | $S_{min}$ , | $T_{min},$ |  |  |  |
|----------------------------------------------------------------------------------|-------|------------------|-------------|-------------|------------|--|--|--|
|                                                                                  | См/см | См/см            | К           | мкВ/К       | К          |  |  |  |
| NdBaFeCo <sub>0.5</sub> Cu <sub>0.5</sub> O <sub>5</sub>                         | 0.208 | 45.8             | 1033        | 43.5        | 1052       |  |  |  |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0.5}Cu_{0.5}O_{5+\delta}$                       | 0.361 | 11.9             | 720         | 64.1        | 670        |  |  |  |
| $Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0.5}Cu_{0.5}O_{5+\delta}$ | 2.076 | 45.0             | 950         | 51.0        | 740        |  |  |  |

NdBaFeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub>

Как видно из рис. 2, замещение только неодима самарием и диспрозием приводит к снижению электропроводности и росту коэффициента термо-ЭДС при комнатной температуре, в то время как

одновременное замещение и неодима и бария приводит к росту электропроводности при температурах ниже 1000 К. Температура перехода полупроводник-металл снижается в обоих случаях.

Таким образом, замещение неодима самарием и диспрозием в равных долях приводит к ухудшению спекаемости, снижению удельной электропроводности и росту коэффициента термо-ЭДС при комнатной температуре. Комплексное замещение неодима самарием и диспрозием, а бария стронцием и кальцием в равных долях приводит к росту относительной плотности, удельной электропроводности при температурах ниже 1000 К. В обоих случаях наблюдается сжатие кристаллической ячейки, снижение температуры перехода полупроводник – металл и рост коэффициента термо-ЭДС при повышенных температурах.

### Список использованных источников

1. Klyndyuk A.I., Chizhova E.A., Kharytonau D.S., Medvedev D.A. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells // Materials. 2022. V. 15, N.1. P. 141.

2. Taskin A., Lavrov A. Origin of the large thermoelectric power in oxygen-variable  $RBaCo_2O_{5+x}$  (R = Gd, Nd) // Phys. Rev. 2006. V. 73. P. 1211101.

3. Е.А. Чижова, А.И. Клындюк, Г.С. Петров, Л.А. Башкиров, О.В. Шваро, С.Л. Радюн Сенсорные и каталитические свойства твердых растворов на основе YBaCuFeO<sub>5</sub> //Новейшие достижения в области импортозамещения в химической промышленности и производстве строительных материалов: Материалы Международной научно-технической конференции. 26-28 ноября 2003 г., г. Минск.– Мн.: БГТУ, 2003. С. 317–319..

4. Клындюк А.И., Журавлева Я.Ю. Структура и физикохимические свойства твердых растворов NdBa<sub>1-x</sub>Ca<sub>x</sub>FeCo<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>5+δ</sub>  $(0.00 \le x \le 0.40)$  // Журнал неорганической химии. 2022. Т. 67, № 12. С. 1874–1880.

5. Atanassova Y.K., Popov V.N., Bogachev G.G., Iliev M.N., Mitros C., Psycharis V., Pissas M. Raman- and infrared active phonons in YBaCuFeO<sub>5</sub>: experimental and lattice dynamics // Phys Rev B. 1993. V. 47. P. 15201–15207.