Список использованных источников

- 1. Преимущества и недостатки алгоритма KNN, оптимальное решение по принципу и параметрам russianblogs.com [Электронный ресурс] Режим доступа: https://russianblogs.com/article/37091283498/
- 2. Алгоритмы поиска данных top-technologies.ru– [Электронный ресурс] Режим доступа: https://top-technologies.ru/ru/article/view?id=24620
- 3. Простой алгоритм распознавания движения habr.com [Электронный ресурс] Режим доступа: https://habr.com/ru/articles/268445/

УДК 666.3/7

О.А. Сергиевич¹, Е.О. Богдан¹, Р.Ю. Попов¹, Т.В. Колонтаева²

¹ Белорусский государственный технологический университет ² Белорусский национальный технический университет Минск, Беларусь

КЕРАМИЧЕСКИЕ ТЕРМОСТОЙКИЕ МАТЕРИАЛЫ НА ОСНОВЕ СИСТЕМЫ Al₂O₃–SiO₂–TiO₂ С ИСПОЛЬЗОВАНИЕМ МОДИФИКАТОРОВ СПЕКАНИЯ

Аннотация. Синтезированы керамические материалы с низким температурным коэффициентом линейного расширения, представляющие интерес для изготовления высокотермостойких изделий. Установлено, что все исследованные оксиды-минерализаторы способствуют повышению степени спекания и прочностных характеристик материалов за счет образования твердых растворов с меньшей степенью анизотропии кристаллической решетки.

O.A. Sergievich¹, E.O. Bogdan¹, R.Yu. Popov¹, T.V. Kolontaeva²

¹Belarusian State Technological University ²Belarusian National Technical University Minsk, Belarus

CERAMIC HEAT-RESISTANT MATERIALS BASED ON THE Al₂O₃-SiO₂-TiO₂ SYSTEM USING SINTERING MODIFIERS

Abstract. Ceramic materials with a low temperature coefficient of linear expansion have been synthesized, which are of interest for the manufacture of highly heat-resistant

products. It has been established that all the studied oxide-mineralizers contribute to an increase in the degree of sintering and strength characteristics of materials due to the formation of solid solutions with a lower degree of anisotropy of the crystal lattice.

При получении высокотермостойких керамических материалов, обладающих достаточной инертностью по отношению к обжигаемым деталям электронной техники, в частности пленочных конденсаторов, диэлектрическая основа которых состоит из титанатов металлов и их твердых растворов с другими соединениями, значительный интерес представляет тройная система Al_2O_3 — SiO_2 — TiO_2 , в которой тройные соединения не образуются, но имеются обширные области кристаллизации двойных кристаллических фаз: муллита и тиалита, сочетание которых является предпосылкой синтеза материалов с высокой термостойкостью и достаточной химической устойчивостью [1, 2].

Для синтеза термостойких материалов с требуемым комплексом свойств и сравнительно невысокой температурой спекания выбрана небольшая область исходных составов смесей в системе Al_2O_3 — SiO_2 — TiO_2 , лежащая вблизи пограничной линии, разделяющей поля кристаллизации муллита и тиалита (рис. 1).

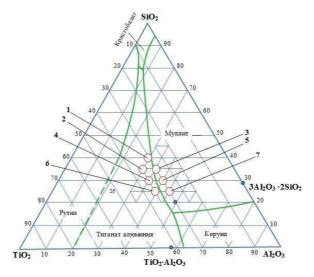


Рис. 1 - Диаграмма состояния Al₂O₃-SiO₂-TiO₂ и составы смесей

Химический состав исходных смесей характеризовался следующим содержанием оксидов, мас.%: $Al_2O_3 - 30$ –45; $SiO_2 - 25$ –40; $TiO_2 - 30$ –35.

В качестве исходных сырьевых компонентов использовался технический глинозем марки ГК-2 (ГОСТ 30998), глина огнеупорная Веселовского месторождения «Веско-Гранитик» (ТУ 14.2 00282049—003—2007), диоксид титана (ГОСТ 9808—84). Опытные образцы для исследования получали методом полусухого прессования из экспериментальных смесей, приготовленных совместным помолом

исходных компонентов в планетарной мельнице. Обжиг образцов производился в электрической печи при температурах 1350, 1400 и 1450 °C с выдержкой в течение 1 ч.

Были исследованы критериальные свойства опытных образцов, определяющие степень спекания материала: водопоглощение 6,8-19,0%, кажущаяся плотность 1995-2507 кг/м³, открытая пористость 16,8-39,0%.

Установлено, что образцы, составы которых лежат в области кристаллизации тиалита, спекаются несколько лучше, чем материалы, находящиеся в поле кристаллизации муллита. Эта разница наиболее заметна при температуре обжига $1350\,^{\circ}$ С и уменьшается при повышении ее до $1450\,^{\circ}$ С. Следует отметить повышение водопоглощения образцов при увеличении содержания Al_2O_3 , как взамен SiO_2 , так и TiO_2 , что обусловлено высокой температурой его плавления. Значения ТКЛР образцов находятся в интервале $(3,99-5,02)\cdot 10^{-6}\,$ К⁻¹ при температуре обжига $1350\,^{\circ}$ С с более высокими их показателями для материалов, относящихся к области кристаллизации тиалита. При температуре обжига $1400\,^{\circ}$ С и выше значения ТКЛР образцов резко уменьшаются до $(1,16-3,29)\cdot 10^{-6}\,$ К⁻¹.

В материалах, обожженных при $1350\,^{\circ}$ С, основной кристаллической фазой является муллит, дополнительной — рутил и корунд, в небольших количествах образуется тиалит, о чем свидетельствуют малоинтенсивные дифракционные максимумы этой фазы. Увеличение температуры обжига до 1400° С значительно изменяет фазовый состав образцов. Интенсивность дифракционных максимумов корунда и рутила резко уменьшается, так как при их взаимодействии образуется тиалит. Следует отметить, что полного взаимодействия между Al_2O_3 и TiO_2 не происходит, они присутствуют во всех синтезированных образцах даже после обжига при $1450\,^{\circ}$ С. Соотношение между основными фазами — муллитом и тиалитом зависит от положения точки исходного состава на диаграмме.

В результате проведенного исследования получены материалы с низким ТКЛР, которые представляют интерес для изготовления высокотермостойких изделий. Однако, данные материалы имеют высокую температуру спекания и свойства при довольно средних показателях механической прочности (36–58 МПа).

Поскольку повышение температуры обжига до 1450 °C не оказывает большого влияния на свойства материалов в данной области системы, для активизации процесса спекания можно применить химические методы с использованием минерализаторов, ускоряющих перенос вещества в твердой фазе [2].

В качестве объекта исследования выбран опытный образец со следующим оксидным составом: Al_2O_3 –30 %, SiO_2 –35 %, TiO_2 –35 %. На

основе литературных данных [2] минерализаторами выбраны оксиды ZrO_2 , SnO_2 , CeO_2 и MnO_2 с физико-химическими свойствами, приведенными в таблице 1, которые вводились в состав исходной массы от 2,5 до 10 % в виде оксидов марки «ХЧ». Образцы, синтезированные по аналогичной технологии, обжигались при температурах 1300, 1350, 1375 °C.

Таблица1 - Кристаллохимические и физические характеристики оксидов

Окани	Плотност	Температура	Ионный радиус катиона, нм		Полиморфные
Оксид	ь, кг/м ³	плавления, °С	по Гольдшмидту	по Полингу	формы
					Гексагональная,
ZrO_2	5730	2680	0,087	0,08	тетрагональная,
					кубическая
CeO ₂	7300	Более 2600	0,102	0,101	Кубическая
SnO ₂	6950	Разлагается при 1127	0,074	0,071	Тетрагональная
MnO ₂	5026	Разлагается	0,07	_	Ромбическая,
WIIIO ₂		при 535			гексагональная

Следует отметить, что степень спекания опытных образцов с введением модификаторов повышается при всех температурах обжига, но наиболее активно этот процесс протекает при температуре 1375 °C и содержании добавок такого типа 7,5 и 10 %. С повышением температуры обжига активизируются все механизмы переноса вещества.

Экспериментальные данные показывают, что наиболее эффективно повышает степень спекания муллито-тиалитовой керамики оксид олова. Водопоглощение опытных образцов при содержании SnO₂ 7,5 и 10 % и температуре обжига 1350 °C составляет менее 1 %. При повышении температуры обжига до 1375 °C минимальное водопоглощение (0,2 %) характерно для образцов с 5 % SnO₂. Минерализирующее действие SnO₂. проявляет даже при температуре обжига 1300 °C, что подтверждается снижением водопоглощения образцов с 12,6 (для исходного состава) до 4% (при введении SnO₂ 10%). Введение CeO₂ в количестве 7,5-10%позволяет снизить водопоглощение до 2 %. ZrO2 имеет самую высокую температуру плавления, ионный радиус Zr^{4+} на 35 % выше, чем у Ti^{4+} , поэтому его минерализирующее действие проявляется в меньшей степени и только при более высокой температуре (1375 °C). ZrO₂ легко кристаллизуется в виде баделлита или циркона (ZrSiO₄). При введении МпО2 до 5% водопоглощение опытных образцов снижается, а при количества (7,5–10 %) значительно дальнейшем увеличении его показатели кажущейся плотности повышается. Самые высокие характерны для образцов, содержащих оксиды SnO2 и CeO2, имеющих высокую плотность ($6950 \text{ и } 7650 \text{ кг/м}^3$ соответственно).

После обжига при 1300 °C ТКЛР образцов находится в пределах $4,06-5,36\cdot10^{-6}$ К $^{-1}$ и мало зависит от вида и количества добавки. Установлено, что все исследованные оксиды-минерализаторы

способствуют некоторому увеличению показателей ТКЛР, что можно объяснить образованием твердых растворов с меньшей степенью анизотропии кристаллической решетки, чем у Al_2TiO_5 и выделением других кристаллических фаз с большим термическим расширением. Наиболее высокие значения ТКЛР характерны для образцов с марганецсодержащей кристаллической фазой.

Данные РФА свидетельствуют о том, что при введении добавок в количестве 2,5 и $5\,\%$ качественный фазовый состав изменяется незначительно, а затем наблюдается снижение интенсивности дифракционных максимумов одних фаз при увеличении интенсивности других. Анализ дифрактограмм опытных образцов исходного состава и с добавками RO_2 в количестве $7,5\,\%$, прошедших обжиг при $1375\,^{\circ}$ С, показал, что меньшее влияние на фазовый состав образцов оказывают добавки SnO_2 и CeO_2 , которые вероятно замещают катион Ti^{4+} в структуре Al_2TiO_5 . Корундовая фаза в данных образцах является вспомогательной.

Более значительно изменяет фазовый состав образцов добавка оксида циркония. Основными фазами являются муллит и рутил, формируется новая кристаллическая составляющая циркон ($ZrSiO_4$). Al_2TiO_5 образуется в небольшом количестве, о чем свидетельствуют малоинтенсивные дифракционные максимумы этой фазы.

При введении в систему MnO_2 малорасширяющаяся анизотропная фаза тиалита не формируется, рутил и корунд присутствуют в виде непрореагировавших основных фаз наряду с муллитом, интенсивность выделения которого при этом уменьшается. Дополнительными фазами является α -кварц и силикаты марганца ($MnO\cdot SiO_2$).

В результате исследований выбраны два оптимальных состава, модифицированных 5 % $\rm SnO_2$ и 7,5 % $\rm CeO_2$, имеющие низкие значения водопоглощения и ТКЛР в пределах (2,4—3,2·10⁻⁶ K⁻¹). Изготовленные методом полусухого прессования и обожженные при температуре 1370 \pm 5 °C опытные образцы характеризовались показателями свойств, приведенными в таблице 2.

Таблица 2 - Свойства образцов оптимальных составов

Наименование свойства	Добавка		
	исходный	SnO ₂	CeO ₂
Водопоглощение, %	9,2	0,2	2,15
Кажущаяся плотность, кг/м 3	2640	3670	3360
Открытая пористость, %	24,3	0,73	7,22
Механическая прочность, МПа: при сжатии	76,2	216,5	128,2
при изгибе	29,1	75,8	41,6
Теплопроводность, Bт/(м·к)	2,36	3,02	2,69
ТКЛР, ∙10-6 К-1	2,02	2,97	2,68
Термостойкость, циклы (800 °С-вода)	>70	>70	>70

Таким образом, разработанные материалы обладают высокими термическими характеристиками и могут быть использованы для работы в условиях резких температурных перепадов.

Список использованных источников

- 1. Диаграммы состояния силикатных систем. Тройные силикатные системы: справочник / ред. Н. А. Торопов [и др.]. Л.: Наука, 1972. 448 с.
- 2. Волочко, А. Т. Огнеупорные и тугоплавкие керамические материалы / А. Т. Волочко, К. Б. Подболотов, Е. М. Дятлова. Минск: Беларус. навука, 2013. 385 с.

УДК 620.197.3:620.193:621.357.7

А.Д. Скобиола, В.Г. Матыс, А.В. Тарасевич Белорусский государственный технологический университет Минск, Беларусь

ЭЛЕКТРОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ЗАЩИТНЫХ СВОЙСТВ КОНВЕРСИОННЫХ ПОКРЫТИЙ, ПОЛУЧЕННЫХ ИЗ ЩЕЛОЧНЫХ МОЛИБДАТСОДЕРЖАЩИХ РАСТВОРОВ НА ЦИНКЕ

Аннотация. Исследовано влияние содержания спирта и pH щелочного молибдатсодержащего раствора пассивации цинка на защитные свойства получаемых конверсионных покрытий. Введение спирта повышает защитные свойства покрытий, а изменение pH раствора в диапазоне 10–12 не влияет на защитные свойства.

A.D. Skobiola, V.G. Matys, A.V. Tarasevich Belarusian State Technological University Minsk, Belarus

ELECTROCHEMICAL INDICATORS OF PROTECTIVE PROPERTIES OF CONVERSION COATINGS PREPARED FROM ALKALINE MOLYBDATE-CONTAINING SOLUTIONS ON ZINC

Abstract. The effect of alcohol content and pH of an alkaline molybdate-containing zinc passivation solution on the protective properties of the resulting conversion coatings was investigated. The introduction of alcohol increases the