# ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

РЕСПУБЛИКА БЕЛАРУСЬ



НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (19) **BY** (11) **14722**
- (13) **C1**
- (46) **2011.08.30**
- (51) МПК **В 22С 1/20** (2006.01)

### (54) СПОСОБ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ СТЕРЖНЕЙ В НАГРЕВАЕМОЙ ОСНАСТКЕ

- (21) Номер заявки: а 20091839
- (22) 2009.12.22
- (71) Заявитель: Учреждение образования "Белорусский государственный технологический университет" (ВY)
- (72) Авторы: Шишаков Евгений Павлович; Шевчук Михаил Олегович; Корнейчик Анатолий Константинович; Чернягов Андрей Мечиславович; Овчинников Владимир Васильевич (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный технологический университет" (ВУ)
- (56) RU 2044590 C1, 1995. ШЕВЧУК М.О. и др. Новые материалы, оборудование и технологии в промышленности: Материалы международной научно-технической конференции молодых ученых. Могилев, 2009. -

RU 2044589 C1, 1995.

JP 62-16844 A, 1987.

JP 7-185731 A, 1995.

JP 6-210391 A, 1994.

EP 0057934 A1, 1982.

(57)

Способ получения связующего для изготовления литейных стержней в нагреваемой оснастке, включающий получение олигомера в щелочной среде при повышенной температуре, охлаждение полученного олигомера до температуры 30-40 °С и введение в него фурфурилового спирта, отличающийся тем, что олигомер получают смешиванием карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и этиленгликоля, диэтиленгликоля, глицерина или триэтаноламина, взятых в мольном соотношении 1: (5,0-7,0): (1,5-2,5): (0,5-1,5): (0,3-0,8), при температуре 80-110 °С в течение 20-60 минут, охлаждение осуществляют вакуумированием до остаточного давления 5-15 кПа, а фурфуриловый спирт вводят в количестве 5-15 % от массы олигомера.

Изобретение относится к литейному производству, а именно к способу получения связующего, используемого в составах песчано-смоляных смесей для изготовления литейных стержней, отверждаемых в нагреваемой оснастке.

Известен способ получения карбамидофуранового связующего для изготовления литейных стержней в нагреваемой оснастке, включающий конденсацию карбамида и формальдегида, взятых в мольном соотношении 1:2 в щелочной среде при рН 7,5-9,3, температуре 94-100 °C в течение 20 мин, подкисление конденсата до рН 4,8-5,4 раствором серной кислоты с добавкой уксусного ангидрида в количестве 3-5 % от массы раствора серной кислоты, конденсацию олигомеров в кислой среде при температуре 94-100 °C в течение 20-60 мин, нейтрализацию конденсата 4 %-ным раствором едкого натра до рН 8,5-9,0, вакуум-сушку конденсата при давлении 30-15 кПа, охлаждение конденсата до темпе-

ратуры не более 45 °C и его модифицирование фурфуриловым спиртом при мольном соотношении карбамид: фурфуриловый спирт 1:(1,0-1,1) и этиленгликолем в количестве 5-10 % от массы фурфурилового спирта [1].

Недостатками способа являются низкая прочность связующего, высокое содержание азота (до 9 %) и свободного формальдегида (до 2,2 %) в связующем, необходимость использования уксусного ангидрида, являющегося пожаро-, взрывоопасным веществом и обладающего наркотическим действием.

Наиболее близким по технической сущности и достигаемому результату является карбамидофенолофурановое связующее для изготовления литейных стержней в нагреваемой оснастке, полученное синтезом карбамидофуранового олигомера, фенолокарбамидоформальдегидного олигомера, смешением олигомеров и фурфурилового спирта в соотношении (39-41):(39-41):(19-21) мас. ч. Карбамидофурановый олигомер получают конденсацией карбамида и формальдегида в щелочной среде при рН 7,5-8,5 при температуре 94-100 °C в течение 30 мин, подкислением конденсата 2 %-ным раствором серной кислоты до рН 5,0-5,4, дополнительной конденсацией в кислой среде при температуре 94-100 °C в течение 30 мин, нейтрализацией конденсата 4 %-ным раствором едкого натра до рН 8,5-9,0, вакуум-сушкой олигомеров, доконденсацией олигомеров со второй порцией карбамида при температуре 55-60 °C в течение 60 мин, охлаждение олигомеров до температуры не более 45 °C и их модификацию фурфуриловым спиртом при мольном соотношении карбамид: формальдегид: фурфуриловый спирт 1:(1,57-1,70):(0,47-0,50). Фенолокарбамидоформальдегидный олигомер получают конденсацией фенола и формальдегида в щелочной среде при температуре 76-82 °C в течение 90 мин, доконденсацией олигомера с карбамидом при температуре 86-92 °C до достижения вязкости 20-50 с по вискозиметру ВЗ-246 с последующим быстрым охлаждением олигомера до температуры 30-40 °С при мольном соотношении карбамид: фенол: формальдегид 1:(2,62-2,80):(10,0-10,2) [2].

Недостатками способа являются высокое содержание азота в связующем (7,85-7,95 %), что ограничивает область его использования, высокая токсичность связующего, содержащего 0,75-0,80 % фенола и 1,85-2,0 % формальдегида, сложность изготовления связующего.

Целью изобретения является повышение качества связующего, снижение токсичности и упрощение технологии его изготовления.

Для достижения технического результата в способе получения связующего для изготовления литейных стержней в нагреваемой оснастке, включающем получение олигомера в щелочной среде при повышенной температуре, охлаждение полученного олигомера до температуры 30-40 °C и введение в него фурфурилового спирта, олигомер получают смешиванием карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и этиленгликоля, глицерина или триэтаноламина, взятых в мольном соотношении 1:(5,0-7,0):(1,5-2,5):(0,5-1,5):(0,3-0,8), при температуре 80-110 °C в течение 20-60 мин, охлаждение осуществляют вакуумированием до остаточного давления 5-15 кПа, а фурфуриловый спирт вводят в количестве 5-15 % от массы олигомера. Использование для получения олигомера карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и этиленгликоля, диэтиленгликоля, глицерина или триэтаноламина позволяет получить связующее, обладающее высокими прочностными свойствами, с низким содержанием азота и формальдегида и не содержащее фенола.

Основу связующего составляет олигомер, полученный из карбамида и формальдегида и обладающий высокими адгезионными свойствами. Количество формальдегида 5-7 моль на 1 моль карбамида выбрано из условия смещения равновесия реакции образования метилольных производных карбамида. Если количество формальдегида менее 5 моль, то образуются метилольные производные карбамида, не обладающие достаточной устойчивостью к гидролизу в водной среде. Если количество формальдегида более 7 моль на 1 моль карбамида, то часть формальдегида остается в свободном виде, что отрицательно влияет на качество связующего и повышает его токсичность.

Введение дифенилолпропана в состав связующего при получении олигомера позволяет связать оставшийся свободный формальдегид, повысить прочностные свойства связующего и его термостойкость. Количество вводимого дифенилолпропана связано с получением связующего высокого качества. Если количество дифенилолпропана менее 0,5 моль на 1 моль карбамида, то его оказывается недостаточно для связывания оставшегося свободного формальдегида. Если количество дифенилолпропана более 1,5 моль на 1 моль карбамида, то в полученном олигомере не остается свободных метилольных групп, что снижает реакционную способность олигомера и его растворимость в воде.

Введение в состав связующего 1,5-2,5 моля фурфурилового спирта на 1 моль карбамида позволяет получить олигомер с высокой скоростью отверждения и повышенной термостойкостью. При снижении количества фурфурилового спирта менее 1,5 моль на 1 моль карбамида снижаются прочностные свойства связующего. При увеличении количества фурфурилового спирта более 2,5 моля на 1 моль карбамида происходит увеличение времени отверждения связующего.

Введение в состав связующего этиленгликоля, диэтиленгликоля, глицерина или триэтаноламина в количестве 0,3-0,8 моля на 1 моль карбамида позволяет повысить пластичность связующего, уменьшить хрупкость стержней и устранить такой дефект отливок, как "горячие трещины". Если количество этиленгликоля, диэтиленгликоля, глицерина или триэтаноламина менее 0,3 моля на 1 моль карбамида, то пластифицирующий эффект недостаточен для снижения хрупкости стержней. Если количество этиленгликоля, диэтиленгликоля, глицерина или триэтаноламина более 0,8 моля на 1 моль карбамида, то значительно увеличивается время отверждения стержней и снижается их прочность в "горячем" состоянии.

Температура получения олигомера 80-110 °C выбрана из условия получения связующего высокого качества и снижения времени реакции. При температуре менее 80 °C часть реагентов остается в свободном состоянии, что приводит к снижению качества связующего и повышению его токсичности. При повышении температуры более 110 °C происходит глубокая "сшивка" олигомера, что приводит к образованию нерастворимого продукта.

Время получения олигомера 20-60 мин связано с температурой и выбрано из условий получения связующего высокого качества. При снижении времени менее 20 мин не происходит полного взаимодействия исходных компонентов, что снижает качество связующего и повышает его токсичность. При увеличении времени более 60 мин образуется высоковязкий или твердый олигомер, непригодный для получения связующего.

Для прекращения реакции образования олигомера проводят охлаждение реакционной смеси и реактора путем вакуумирования до остаточного давления 5-15 кПа. При этом происходит испарение воды и быстрое охлаждение олигомера до температуры 30-40 °C. Величина давления на стадии вакуумирования связана с температурой кипения воды в реакционной смеси. При давлении более 15 кПа не удается охладить олигомер до температуры ниже 40 °C. При величине остаточного давления менее 5 кПа начинает отгоняться свободный фурфуриловый спирт, что приводит к его потерям.

Дополнительное введение 5-15 % фурфурилового спирта от массы олигомера позволяет снизить вязкость связующего, повысить его однородность и увеличить срок хранения. При снижении количества фурфурилового спирта менее 5 % от массы олигомера его оказывается недостаточно для снижения вязкости до требуемых технологических показателей (30-70 с по вискозиметру ВЗ-246). При увеличении количества фурфурилового спирта более 15 % от массы олигомера увеличивается содержание свободного фурфурилового спирта в связующем, что приводит к его потерям из-за испарения.

Способ поясняется следующими примерами.

### Пример 1.

В реактор объемом 2 дм<sup>3</sup>, снабженный мешалкой, холодильником, рубашкой для обогрева, воздушной и вакуумной линией, заливают 486 г формалина концентрацией 37 %,

что составляет 180 г безводного формальдегида или 6 молей. Включают мешалку, обратный холодильник и засыпают в реактор 60 г (1 моль) карбамида. Смесь подогревают до температуры 90 °С и выдерживают при этой температуре 10 мин. Затем в реактор засыпают 228 г (1 моль) дифенилолпропана и 40 г (1 моль) едкого натра. В результате протекания экзотермической рекции температура смеси повышается до 105 °С. Через 10 мин в реактор заливают 196 г (2 моля) фурфурилового спирта. Смесь выдерживают при перемешивании 10 мин. По истечении указанного времени в реактор заливают 31 г (0,5 моля) этиленгликоля. Через 20 мин перемешивания холодильник переключают с обратного на прямое действие, а реактор подключают к вакуум-насосу. Давление в реакторе снижают от 101,3 до 7,0 кПа. Реакционная масса закипает, и ее температура снижается от 105 до 35 °С.

На стадии вакуум-охлаждения из конденсата отгоняют 105 г воды, а в реакторе остается 936 г охлажденного олигомера. Затем в реактор заливают 93,6 г фурфурилового спирта. Олигомер и фурфуриловый спирт перемешивают 5 мин, а затем сливают из реактора. Получают 1028 г связующего, содержащего 26,5 % воды, 2,67 % азота и 0,10 % свободного формальдегида. Свободный фенол в связующем отсутствует. Вязкость связующего при температуре 20 °C составляет 38 с по вискозиметру ВЗ-246.

Для испытания связующего готовят песчано-смоляную смесь следующего состава: кварцевый песок 100 мас. ч., связующее - 2 мас. ч., катализатор (50 %-ный раствор n-толуолсульфокислоты) - 0,2 мас. ч. Смешение компонентов, изготовление стандартных образцов и их испытание проводят по методикам, принятым в технологии литейного производства.

Газопроницаемость песчано-смоляной смеси составляет 118 условных единиц, прочность образцов-восьмерок на растяжение через 30 с выдержки в термостате при температуре 220 °C составляет 0,43 МПа, а через 60 с - 1,25 МПа. После остывания образцов до температуры 20 °C - 3,45 и 3,65 МПа соответственно.

Пример 2 выполнен аналогично условиям примера 1. Отличие состоит в том, что мольное соотношение карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и диэтиленгликоля составляет 1:5,5:1,25:1,25:0,40. Получение олигомера проводят при температуре 80-100 °C. Расход фурфурилового спирта на стадии модификации составляет 7 % от массы охлажденного олигомера. Получают 953 г связующего, содержащего 26,0 % воды, 2,90 % азота и 0,08 % свободного формальдегида. Свободный фенол в связующем отсутствует. Вязкость связующего при температуре 20 °C составляет 44 с по вискозиметру ВЗ-246. Испытания связующего проводят по условиям примера 1. Газопроницаемость песчано-смоляной смеси составляет 114 условных единиц. Прочность образцов-восьмерок на растяжение в "горячем" состоянии составляет 0,41 и 1,34 МПа при времени выдержки 30 и 60 с соответственно. В "холодном" состоянии прочность на растяжение составляет 3,44 и 3,62 МПа соответственно.

Пример 3 выполнен аналогично условиям примера 1. Отличие состоит в том, что мольное соотношение карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и глицерина составляет 1:6,5:2,25:0,70:0,60. Получение олигомера проводят при температуре 95-110 °C. Расход фурфурилового спирта на стадии модификации связующего составляет 12 % от массы охлажденного олигомера. Получают 1072 г связующего, содержащего 28,6 % воды, 2,57 % азота и 0,05 % свободного формальдегида. Свободный фенол в связующем отсутствует. Вязкость связующего составляет 42 с по вискозиметру ВЗ-246. Испытания связующего проводят по условиям примера 1. Газопроницаемость песчаносмоляной смеси составляет 108 условных единиц. Прочность образцов-восьмерок на растяжение в "горячем" состоянии составляет 0,54 и 1,57 МПа при времени выдержки 30 и 60 с соответственно. В "холодном" состоянии прочность на растяжение составляет 3,27 и 3,48 МПа соответственно.

| условия получения связующего |          |               |                    |                                |                       |                      |                                    |                 |                                                  |
|------------------------------|----------|---------------|--------------------|--------------------------------|-----------------------|----------------------|------------------------------------|-----------------|--------------------------------------------------|
| № при-                       |          | Мольное сооті | ентов в олиго      | Условия получения<br>олигомера |                       | Давление<br>вакууми- | Количество фурфурилового спирта на |                 |                                                  |
| мера                         | карбамид | формальдегид  | фурфуриловый спирт | дифенилол-<br>пропан           | многоатомный<br>спирт | температура, °С      | время,<br>мин                      | рования,<br>кПа | стадии модифика-<br>ции, % от массы<br>олигомера |
| 1                            | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 90-105               | 50                                 | 7               | 10,0                                             |
| 2                            | 1,0      | 5,5           | 1,25               | 1,25                           | 0,40                  | 80-100               | 40                                 | 7               | 7,0                                              |
| 3                            | 1,0      | 6,5           | 2,25               | 0,70                           | 0,60                  | 95-110               | 30                                 | 7               | 12,0                                             |
| 4                            | 1,0      | 5,8           | 1,75               | 0,85                           | 0,70                  | 80-110               | 60                                 | 7               | 14,0                                             |
| 5                            | 1,0      | 5,0           | 1,50               | 1,00                           | 0,50                  | 90-105               | 50                                 | 7               | 10,0                                             |
| 6                            | 1,0      | 7,0           | 2,50               | 1,00                           | 0,50                  | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 7                            | 1,0      | 6,0           | 2,00               | 0,50                           | 0,30                  | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 8                            | 1,0      | 6,0           | 2,00               | 1,50                           | 0,80                  | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 9                            | 1,0      | 4,5           | 2,80               | 1,00                           | 0,5                   | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 10                           | 1,0      | 7,5           | 1,40               | 1,00                           | 0,5                   | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 11                           | 1,0      | 6,0           | 2,00               | 0,40                           | 0,85                  | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 12                           | 1,0      | 6,0           | 2,00               | 1,60                           | 0,25                  | 90-105               | 50                                 | 5-10            | 10,0                                             |
| 13                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 80                   | 60                                 | 5-10            | 10,0                                             |
| 14                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 110                  | 20                                 | 5-10            | 10,0                                             |
| 15                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 75                   | 65                                 | 5-10            | 10,0                                             |
| 16                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 115                  | 15                                 | 5-10            | 10,0                                             |
| 17                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 90-105               | 50                                 | 3               | 10,0                                             |
| 18                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 90-105               | 50                                 | 20              | 10,0                                             |
| 19                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 90-105               | 50                                 | 5-10            | 5,0                                              |
| 20                           | 1,0      | 6,0           | 2,00               | 1,00                           | 0,50                  | 90-105               | 50                                 | 5-10            | 15,0                                             |
| 21                           | 1,0      | 6,0           | 2,00               | 2,00                           | 0,50                  | 90-105               | 50                                 | 5-10            | 3,0                                              |
| 22                           | 1,0      | 6,0           | 2,00               | 2,00                           | 0,50                  | 90-105               | 50                                 | 5-10            | 18,0                                             |
| 23                           | 1,0      | 1,635         | 0,485              |                                | -                     | 94-100               | 120                                | -               | 25,0                                             |
| прототип                     | 1,0      | 10,1          | -                  | 2,711<br>фенол                 | -                     | 76-82                | 30                                 | -               | 25,0                                             |

Примечание: в примерах 1, 5-22 в качестве многоатомного спирта использовали этиленгликоль, в примере 2 - диэтиленгликоль, в примере 3 - глицерин, в примере 4 - триэтаноламин.

## Состав и свойства связующего

| Мо шин копо    |      | Условная вязкость |       |              |               |
|----------------|------|-------------------|-------|--------------|---------------|
| № примера      | вода | азот              | фенол | формальдегид | связующего, с |
| 1              | 26,5 | 2,67              | отс.  | 0,10         | 38            |
| 2              | 26,0 | 2,90              | отс.  | 0,08         | 44            |
| 3              | 28,6 | 2,57              | OTC.  | 0,05         | 42            |
| 4              | 28,2 | 3,63              | отс.  | 0,03         | 48            |
| 5              | 24,8 | 2,73              | отс.  | 0,03         | 52            |
| 6              | 28,4 | 2,47              | отс.  | 0,27         | 39            |
| 7              | 26,7 | 2,78              | отс.  | 0,12         | 47            |
| 8              | 25,7 | 2,48              | отс.  | 0,08         | 52            |
| 9              | 20,7 | 2,78              | отс.  | 0,03         | 65            |
| 10             | 27,4 | 2,85              | отс.  | 0,35         | 68            |
| 11             | 22,8 | 2,75              | отс.  | 0,03         | 37            |
| 12             | 21,8 | 2,37              | отс.  | 0,10         | 35            |
| 13             | 26,4 | 2,67              | отс.  | 0,48         | 61            |
| 14             | 26,7 | 2,71              | отс.  | 0,07         | 97            |
| 15             | 27,1 | 2,74              | отс.  | 0,25         | 56            |
| 16             | 26,8 | 2,65              | отс.  | 0,63         | 44            |
| 17             | 14,5 | 2,65              | отс.  | 0,08         | 114           |
| 18             | 36,2 | 2,63              | отс.  | 0,09         | 31            |
| 19             | 28,1 | 2,74              | отс.  | 0,10         | 64            |
| 20             | 25,4 | 2,51              | отс.  | 0,08         | 37            |
| 21             | 29,1 | 2,92              | отс.  | 0,07         | 112           |
| 22             | 19,4 | 2,51              | отс.  | 0,06         | 34            |
| 23<br>прототип | 17,0 | 7,90              | 0,80  | 2,00         | 50            |

Физико-механические показатели связующего

| ) (            | Газопроницаемость, |             | а растяжение<br>агрева, МПа | Прочность на растяжение через 60 с нагрева, МПа |              |  |
|----------------|--------------------|-------------|-----------------------------|-------------------------------------------------|--------------|--|
| № примера      | условные единицы   | в "горячем" | в "холодном"                | в "горячем"                                     | в "холодном" |  |
|                |                    | состоянии   | состоянии                   | состоянии                                       | состоянии    |  |
| 1              | 118                | 0,43        | 3,45                        | 1,25                                            | 3,65         |  |
| 2              | 114                | 0,41        | 3,44                        | 1,34                                            | 3,62         |  |
| 3              | 108                | 0,54        | 3,27                        | 1,57                                            | 3,48         |  |
| 4              | 104                | 0,64        | 3,45                        | 1,67                                            | 3,61         |  |
| 5              | 110                | 0,31        | 3,21                        | 0,62                                            | 3,35         |  |
| 6              | 118                | 0,45        | 3,15                        | 0,64                                            | 3,31         |  |
| 7              | 102                | 0,65        | 3,24                        | 0,91                                            | 3,27         |  |
| 8              | 95                 | 0,34        | 3,16                        | 0,72                                            | 3,45         |  |
| 9              | 94                 | 0,27        | 3,05                        | 0,61                                            | 3,10         |  |
| 10             | 90                 | 0,65        | 3,35                        | 1,28                                            | 3,40         |  |
| 11             | 126                | 0,34        | 3,27                        | 0,47                                            | 3,35         |  |
| 12             | 124                | 0,45        | 3,15                        | 0,97                                            | 3,25         |  |
| 13             | 104                | 0,64        | 3,35                        | 0,75                                            | 3,42         |  |
| 14             | 87                 | 0,94        | 2,87                        | 1,47                                            | 3,02         |  |
| 15             | 104                | 0,47        | 3,21                        | 0,94                                            | 3,22         |  |
| 16             | 110                | 1,28        | 2,784                       | 1,54                                            | 2,97         |  |
| 17             | 83                 | 1,47        | 2,95                        | 2,05                                            | 3,10         |  |
| 18             | 131                | 0,35        | 3,05                        | 0,74                                            | 3,37         |  |
| 19             | 107                | 1,47        | 2,87                        | 1,74                                            | 3,05         |  |
| 20             | 92                 | 1,54        | 2,65                        | 2,04                                            | 2,80         |  |
| 21             | 137                | 0,43        | 3,47                        | 1,03                                            | 3,51         |  |
| 22             | 65                 | 0,39        | 3,24                        | 0,82                                            | 3,25         |  |
| 23<br>прототип | 92                 | 0,40        | 3,3                         | 0,8                                             | 3,4          |  |

Пример 4 выполнен аналогично условиям примера 1. Отличие состоит в том, что мольное соотношение карбамида, формальдегида, фурфурилового спирта, дифенилолпропана и триэтаноламина составляет 1:5,8:1,75:0,85:0,70. Получение олигомера проводят при температуре 80-110 °C. Расход фурфурилового спирта на стадии модификации связующего составляет 14 % от массы охлажденного олигомера. Получают 1030 г связующего, содержащего 28,2 % воды, 3,63 % азота и 0,03 % свободного формальдегида. Свободный фенол в связующем отсутствует. Вязкость связующего составляет 48 с по вискозиметру ВЗ-246. Газопроницаемость песчано-смоляной смеси составляет 104 условные единицы. Прочность образцов-восьмерок на растяжение в "горячем" состоянии составляет 0,64 и 1,67 МПа при времени выдержки 30 и 60 с соответственно. В "холодном" состоянии прочность на растяжение составляет 3,45 и 3,61 МПа соответственно.

**Примеры 5-8** выполнены аналогично условиям примера 1, но при граничных значениях соотношения компонентов на стадии получения олигомера.

**Примеры 9-12** выполнены аналогично условиям примера 1, но при запредельных значениях соотношения компонентов на стадии получения олигомера.

**Примеры 13-16** выполнены аналогично условиям примера 1. Отличие состоит в иных температуре и времени стадии получения олигомера.

**Примеры 17-18** выполнены аналогично условиям примера 1, но при ином давлении на стадии вакуумирования олигомера.

**Примеры 19-22** выполнены аналогично условиям примера 1, но при ином количестве фурфурилового спирта, вводимого на стадии модификации олигомера.

Пример 23 выполнен по условиям прототипа.

Условия получения связующего приведены в табл. 1, состав и свойства связующего - в табл. 2, а физико-механические показатели связующего - в табл. 3.

Реализация изобретения позволяет получить связующее, не содержащее свободного фенола, снизить содержание формальдегида в связующем до 0,03-0,10 %, т.е. в 20-60 раз, уменьшить содержание азота с 7,9 до 2,6-2,9 %, что значительно расширяет область применения связующего.

Использование изобретения возможно на предприятиях, имеющих литейное производство: Минском моторном заводе, Минском тракторном заводе, Минском заводе отопительного оборудования.

### Источники информации:

- 1. Патент РФ 2048951. Способ получения карбамидофуранового связующего для изготовления литейных стержней по нагреваемой оснастке // Бюл. № 33. 1995.
- 2. Патент РФ 2044590. Карбамидофенолофурановое связующее для изготовления литейных стержней в нагреваемой оснастке // Бюл. № 27. 1995 (прототип).