Список использованных источников

- 1. Somefun O.A., Kayode A., Folasade D. The dilemma of PID tuning // Annual Reviews in Control. 2021. No. 52. P. 65–74.
- 2. Оптимизация параметров фильтра с управляемым ограничителем для слабых сигналов / Д. А Гринюк [и др.] // Наука и Техника. 2003. № 5. С. 32-34. DOI: 10.21122/2227-1031-2003-0-5-32-34.
- 3. Гринюк Д. А., Олиферович Н.М., Сухорукова И.Г. Использование алгоритмов аппроксимации для сглаживания трендов измерительных преобразователей // Труды БГТУ. Сер. 3, Физикоматематические науки и информатика. 2017. № 2 (200). С. 82–87.
- 4. Bialetski Y., Hryniuk D. Controlled Limiter in the Synchronous Detection Circuit // Science Future of Lithuania. Electronics and Electrical Engineering, 2017. Vol. 9, issue 3. P. 289–292.
- 5. Гринюк Д.А., Олиферович Н. М, Сухорукова И. Г., Дейнека Т. А., Клютко М. В. Уменьшение влияния помех измерительного канала на замкнутую систему регулирования // Труды БГТУ. Сер. 3, Физикоматематические науки и информатика. 2023. № 2 (261). С. DOI:10.52065/2520-6141-2023-272-2-11.

УДК 691-413

И.М. Грошев¹, Ю.В. Дойлин¹, А.А. Кожемяко¹, К.И. Тарутько¹ Е.В. Дубоделова², А.Д. Заровский³

 $^{1}{\rm OAO}$ «Витебскдрев» Витебск, Беларусь $^{2}{\rm Белорусский}$ государственный технологический университет $^{3}{\rm OOO}$ «ФедВар» Минск, Беларусь

СПОСОБ ПРОИЗВОДСТВА ДРЕВЕСНОВОЛОКНИСТОЙ ПЛИТЫ СРЕДНЕЙ ПЛОТНОСТИ СУХОГО СПОСОБА ПРОИЗВОДСТВА ПОВЫШЕННОЙ ВОДОСТОЙКОСТИ

Аннотация. Рассматривается способ приготовления древесноволокнистой плиты средней плотности сухого способа производства повышенной водостойкости для использования во влажных зонах.

I.M. Groshev¹, Y.V. Doylin¹, A.A. Kozhemyako¹, K.I. Tarutko¹ E.V. Dubodelova², A.D. Zarovsky³

¹JSC "Vitebskdrev" Vitebsk, Belarus ²Belarusian State Technological University ³FedVar LLC Minsk, Belarus

METHOD FOR PRODUCING MEDIUM DENSITY FIBER BOARD WITH DRY PRODUCTION METHOD FOR INCREASED WATER RESISTANCE

Abstract. A method for preparing dry-process medium-density fiberboard with increased water resistance for use in wet areas is being considered.

Плиты сухого способа производства средней плотности (МДФ) сегодня наиболее востребованы на потребительском рынке. К сожалению, в Республике Беларусь и странах ЕАЭС производятся МДФ в основном общего назначения, что ограничивает область их применения. Разработка технологии МДФ специального назначения, в т.ч. повышенной влагостойкости, позволит создать инновационный материал как для внутреннего рынка, так и для экспорта в ближнее и дальнее зарубежье.

Основная цель повышения водостойкости древесноволокнистых плит – обеспечение постоянства свойств во времени и неизменности их формы при эксплуатации при переменных условиях влажности и температуры. Известны способы придания плитам водостойкости – пропитка, поверхностная обработка ДВП, лакокрасочными и плёночными составами. При этом, для придания водостойкости, применяют химические вещества – гидрофобизаторы, индифферентные к воде, не растворимые и не набухающие в ней. Они создают механический барьер для проникновения в древесные частицы скорость уменьшают смачивания волокна предотвращает деформацию (набухание) в течение определённого промежутка времени, то есть временно изолирует материал от воздействия внешней среды [1].

Использование фенолформальдегидных смол и карбамидоформальдегидных смол (КФС) позволяет повысить устойчивость плит к влаге, но не снимает проблему смоляных пятен и пригаров [2].

В качестве гидрофобизатора, может быть применён сульфатный лигнин (а.с. 187285, СССР), смола октофор-N. Снизить

гидрофильность волокон при одновременном улучшении прочностных плит, возможно при использовании смолы на основе полиизоционатов (а.с. 442952, СССР; а.с.849990, СССР), кремнийорганических соединений (а.с. 905257, СССР; а.с. 103092 СССР), синтетических волокон (а.с. 956686, СССР; а.с. 416253, СССР), нефтеполимерных смол (а.с. 8727800,СССР) и др.

Известны способы придания водостойкости древесноволокнистым плитам с одновременным снижением горючести путём обработки волокнистой массы синтетическими смолами, хлорированными латексами, водорастворимыми антипиренами; пропиткой готовых плит антипиренами и карбамидомеламиновой смолой; обработкой поверхности плит карбамидомеламиновой смолой введением в волокнистую массу минеральных наполнителей [3]. Недостатками вышеуказанных способов является сохранение уровня или снижение водостойкости плит, требуются дополнительные операции – пропитка и сушка плит.

Эффективными модификаторами древесных волокон в производстве ДВП являются составы на основе таллового масла [1]. Однако водостойкость при этом повышается незначительно, требуется применение ненасыщенных жирных кислот с большой молекулярной массой, входящих в состав таллового масла.

В качестве гидрофобного вещества в основном рекомендуется использовать парафин, а также вещества, обладающие гидрофобными свойствами (петролатум, гач, церезин, воски, эфиры жирных кислот, различные кубовые остатки). Парафин обладает наилучшими гидрофобными свойствами и применяется в виде эмульсии или расплава [1, 2].

Известна композиция ДЛЯ изготовления **MDF** (древесноволокнистые плиты средней плотности от англ. medium fibreboard), включающая древесное волокно, модифицированную карбамидоформальдегидную смолу аминами (полиэтиленполиамином (ПЭПА) или реагентом ОХН производства ПЭПА и меламина), отвердитель и гидрофобизатор Недостатком данной композиции является технологическая проработка использования ПЭПА и высокие затраты по использованию меламина. При этом постоянная водостойкость не достигается.

Изучена возможность получения ДВП, обладающих длительной гидрофобностью [4]. Недостатком данного способа является дополнительная техническая операция — нанесение модифицирующего

состава на поверхность ДВП с последующей термообработкой, что значительно повышает затраты на производство продукции.

Возможен способ придания влагостойкости (гидрофобизации) с использованием неполярных углеводородов (парафины, гачи) в виде тонкодисперсных эмульсий (суспензий) на основе парафина [5]. Недостатком способа является придание плитам только временной водостойкости.

Приводится способ гидрофобизации древесных материалов с использованием парафинового нефтяного воска в виде нанодисперсии [6]. Недостатком способа является получение только временной влагостойкости древесных плит, требуется специальное оборудование для подготовки нанодисперсии.

Задачей настоящей работы является придание плитам MDF постоянной водостойкости.

Указанная задача решается введением в известную композицию, включающую древесное волокно, карбамидоформальдегидную смолу, отвердитель, парафин и карбамид, гидрофобизирующую жидкость в количестве 0,1...0,5 % от массы абс. сух. волокна.

Гидрофобизирующая жидкость представляет собой водный раствор на основе кремнеорганических олигомеров – алкилсиликонаты с массовой долей активного вещества 55...58 %. Хорошо смешивается со смолой, не снижает скорость и степень отверждения КФС, обеспечивая при этом постоянную водостойкость.

При нанесении на обрабатываемые волокна древесины алкилсиликаты калия разлагаются под действием присутствующей в воздушной среде углекислоты, с образованием алкилсилантриолов и полисилооксанов. Образовавшиеся соединения взаимодействуют с отвердителем КФС, окисями и гидроокисями входящими в их состав и подвергаются под их действием дальнейшей поликонденсации с поверхности образованием на нерастворимой волокон водоотталкивающей плёнки. Алкилсиликонаты химически связываются также с солями, входящими в состав древесного волокна. Преимущества алкилсиликонатов перед другими гидрофобизаторами заключается в том, что их применяют в виде водных растворов, они не имеют запаха и достаточно дёшевы.

Расход гидрофобизирующей жидкости, определённый на основании исследований составляет 0,1...0,5 % к абс. сух. волокну, оптимальный расход — 0,3 %. Композицию готовят следующим образом. Окрашенное древесное волокно смешивают со связующим, парафином, карбамидом. Проклеенную массу сушат до влажности 10,0...10,2 %. Добавляют гидрофобизирующую жидкость после чего

формируют древесноволокнистый ковёр и осуществляют его горячее прессование. Результаты физико-механических испытаний плит, изготовленных в промышленных условиях приведены в таблице.

Анализ данных, приведённых в таблице, показывает, что по сравнению с прототипом, не значительно, но уменьшается содержание свободного формальдегида в плитах, физико-механические показатели плит улучшаются. Применение предлагаемой композиции повышает водостойкость плит. Рекомендуемый расход гидрофобизирующей жидкости составляет 0,3 % к абс. сух. волокну (пример 3).

Таблица – Физико-механические показатели плит

	Количество вводимых добавок, масс.%				Физико-механические показатели плит					
Пример			Парафин	Гидрофобизирующа я жидкость	Прочность, Н/мм ²				(a, I.	
	КФС	Отвердитель			на изгиб	на поперечное растяжение	Опция 1	Опция 2	Содержание формальдегида, мг/100 г а.с.п.	Примечание
1	10,3	0,1	1,0	0,1	33,32	0,72	15,6	0,17	6,91	приемлемо
2	10,3	0,1	1,0	0,2	38,23	0,88	13,8	0,21	6,84	приемлемо
3*	10,3	0,1	1,0	0,3	41,65	0,98	13,6	0,24	6,79	приемлемо
4	10,3	0,1	1,0	0,4	41,32	0,92	14,6	0,22	6,73	приемлемо
5	10,3	0,1	1,0	0,5	35,12	0,84	15,3	0,18	6,78	неприемлемо
6	10,5	0,15	1,0	0,1	34,07	0,80	14,7	0,20	7,34	приемлемо
7	10,5	0,15	1,0	0,2	39,04	0,82	14,8	0,22	7,28	приемлемо
8	10,5	0,15	1,0	0,3	37,89	0,89	14,4	0,24	7,25	приемлемо
9	10,5	0,15	1,0	0,4	41,85	0,84	14,9	0,20	7,23	приемлемо
10	10,5	0,15	1,0	0,5	37,16	0,87	15,0	0,23	7,17	приемлемо
Прототип	10,3	0,10	1,0	0	40,20	0,75	27,0	0,06	7,80	-

Примечание: опция 1 – разбухание толщины после циклического теста, %; опция 2 – прочность на поперечное растяжение после циклического теста, H/мм² EN 321; *

Таким образом, включение в композицию гидрофобизирующей жидкости позволяет получить постоянную водостойкость MDF, что приводит к увеличению срока эксплуатации плит и расширяет область их применения. Предлагаемая композиция прошла промышленную проверку в цехе MDF OAO «Витебскдрев», начато её промышленное производство и реализация полученной водостойкой плиты. Получен сертификат соответствия на плиту MDF.Н водостойкую №ВY/112 03/12/024. Евразийская патентная организация зарегистрировала Евразийскую заявку «Способ производства древесно-волокнистой плиты и древесно-волокнистая плита» под номером EA202293412.

⁻ толщина плит MDF 18 мм

Список использованных источников

- 1. Карасев Е.И., Киселев И.Ю., Мерсов Е.Д., Киселева Г.В. Водостойкость древесноволокнистых плит: Обзор инф. М.: ВНИПИЭИлеспром, 1986. 32 с.
- 2. Бекетов В.Д., Обседшевская Г.Н. Развитие сухого способа производства древесноволокнистых плит за рубежом: Обзор инф. М.: ВНИПИЭИлеспром, 1979. С. 1-40.
- 3. Демченко Н.С. Производство водостойких и огнеупорных древесных плит / Древесно-волокнистые плиты / Труды Всесоюзной науч.-техн. конф. по производству и применению древесно-волокнистых материалов и пластиков, г. Архангельск: Под ред. к.т.н. Б.Д. Богомолова, ГНТК СССР, М. 1961. С. 111-118.
- 4. Гамова И.А., Царев Г.И., Просвирин И.А. Композиция таллового масла и полиизоционатов для водостойких ДВП // Древесные плиты: теория и практика / Под. ред. Леоновича А.А.: 8-я Междунар. науч.прак. конф., 23-24 марта 2005 г. СПб, 2005. С. 46-50.
- 5. Гаврилюк С.Ф., Галкин П.В. Гидрофобизация древесных плит парафиновой эмульсией «Эрговакс-60» // Древесные плиты: теория и практика / Под. ред. Леоновича А.А.: 12-я Междунар. науч.-прак. конф., 18-19 марта 2009 г. СПб, 2009. С. 178-179.
- 6. Богачев Д.А. Перспективы применения восковых нанодисперсий для гидрофобизации древесных материалов // Состояние и перспективы развития производства древесных плит / Под ред. Гнутовой Е.П.: сборник докладов 19-й международной науч.-прак. конф. 16-17 марта 2016 г. Балабаново, 2016. С. 127-131.

УДК 547.32:539.23

3.С. Гурина

Институт химии новых материалов Национальной академии наук Беларуси Минск, Беларусь

ТРИБОЛОГИЧЕСКИЕ СВОЙСТВА МОНОСЛОЕВ НА ОСНОВЕ НЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ

Аннотация. Исследованы трибологические свойства монослоев на основе олеиновой и эруковой кислот полученных на кремниевой поверхности методами окунания «dip-coating» и Ленгмюра-Блоджетт (ЛБ). Установлено, что монослои