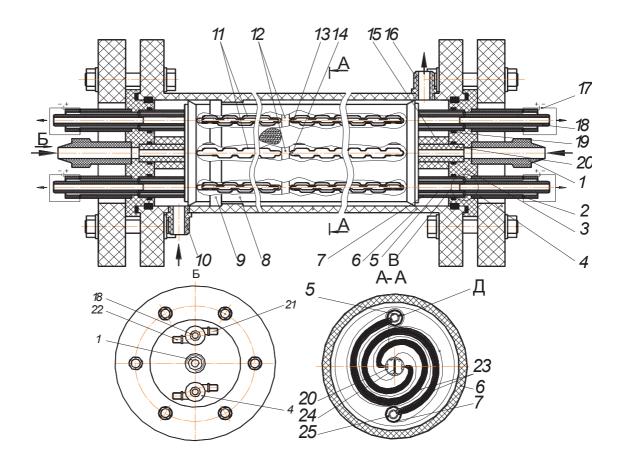
И.С. Седоплатов, П. Луа, С.В. Ковалев, А.А. Столяров, О.А. Ковалева, Д.И. Кобелев

Тамбовский государственный университет им. Г.Р. Державина Тамбов, Россия

РАЗРАБОТКА ПРОМЫШЛЕННОГО ДИЗАЙНА КОНСТРУКЦИИ ЭЛЕКТРОБАРОМЕМБРАННОГО АППАРАТА РУЛОННОГО ТИПА

Аннотация. В статье приведена конструкция электробаромембранного аппарата рулонного типа. Описан процесс работы, а также представлен ряд конструктивных особенностей, позволяющий улучшить характеристики аппарата.

I.S. Sedoplatov, P. Lua, S.V. Kovalev, A.A. Stolayrov,
O.A. Kovaleva, D.I. Kobelev
Derzhavin Tambov State University
Tambov, Russia


DEVELOPMENT OF INDUSTRIAL DESIGN OF THE CONSTRUCTION OF AN ELECTROBAROMEMBRANE DEVICE OF A ROLL TYPE

Abstract. The article presents the design of an electrobaromembrane device of a roll type. The process of operation is described, as well as a number of design features are presented to improve the characteristics of the device.

При реализации электромембранных процессов разделения растворов важной задачей является устранение негативных явлений тепловыделения и осадкообразования (при наложении разности электрических потенциалов на систему мембрана – раствор). Для этого в системах электромембранного разделения технологических жидкостей (например, в электрохимических мембранных аппаратах рулонного типа) применяется принудительное охлаждение растворов (потоков ретентата или пермеата) [1-4]. Различным конструкциям мембранных аппаратов присущи как достоинства, так и недостатки, поэтому необходим рациональный выбор промышленного дизайна конструкции аппарата. Наиболее универсальными среди мембранных аппаратов являются устройства, которые могут применяться и для электробаромембранного разделения растворов (при трансмембранного давления и электрического напряжения), и для баромембранного разделения (при действии трансмембранного давления без перепада электрического потенциала на мембране) [3, 4].

Основная конструктивная особенность аппарата (рис. 1, 2) — дополнительные каналы для циркуляции разделяемого раствора и отвода ретентата и пермеата в перфорированной внутренней трубке аппарата при осуществлении подачи разделяемого раствора по двухконтурной схеме

Аппарат работает следующим образом. Исходный раствор подается в аппарат через штуцер подачи исходного раствора 1, далее через сквозную проточку в центре крышки 3 поступает в перфорированную трубку 20 с вертикальной перегородкой 24 и прокачивается в ней до поперечной перегородки 12. Затем через эллиптические проточки 14 с большими полуэллипсами 11 раствор поступает в пространство, где расположена сетка-турбулизатор 33, по разные стороны от которой установлены прианодные 35 и прикатодные 34 мембраны, образующие межмембранный канал.

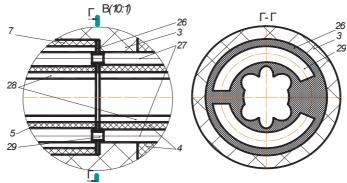


Рис. 1 – Электробаромембранный аппарат рулонного типа

По межмембранному каналу раствор поступает в эллиптические щели 13, во внутреннюю трубку 5 и отводится по внутреннему пространству штуцера для отвода ретентата 18. В этот же момент времени к дренажным сеткам (катоду 37 и аноду 38) включением устройства для подвода электрического тока 17 через электрические провода 27 подводится внешнее постоянное электрическое поле с заданной плотностью тока.

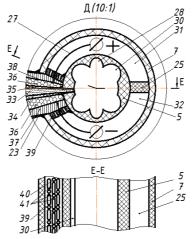


Рис. 2 — Вид Д увеличенный на рис. 1 и сечение E-E элемента электрохимического мембранного аппарата

Электрические провода 27 проходят через герметизирующую заливку 2 внешней отводной трубки 4, далее через коллекторы для отвода прианодного пермеата 31 и прикатодного пермеата 32 (между перегородкой 25, внешней 7 и внутренней 5 трубками и полимерными перфорированными перегородками 39), отверстия 29 в фиксирующей прокладке 26, эллиптические отверстия 41 и отверстия проходные 40.

Раствор при движении турбулизируется сеткой-турбулизатором 33, установленной в межмембранном канале около поверхности прианодных 35 и прикатодных 34 мембран (в зависимости от схемы подключения дренажных сеток (анода 38 и катода 37) и от схемы подключения электродов «плюс» или «минус»). В межмембранном

канале растворенное вещество в растворе диссоциирует на ионы – анионы и катионы, которые под действием электрического тока и градиента давления проникают (совместно с растворителем) сквозь поры соответственно прианодных 35, прикатодных 34 мембран и подложки мембран 36 (при этом анионы и катионы поступают в пространство, где расположены дренажные сетки – анод 38 и катод 37). Образующийся при этом пермеат (прианодный и прикатодный) самотеком отводится через эллиптические отверстия 41 и проходные отверстия 40 в полимерной перфорированной перегородке 39, на которую уложены концы дренажных сеток – анода 38 и катода 37. Пермеат поступает в коллекторы для отвода прианодного пермеата 31 прикатодного пермеата 32, проходит через отверстия (выполненные в виде двух полумесяцев с прямоугольными краями) в фиксирующей прокладке 26 и выводится через штуцеры для отвода прианодного пермеата 21 и прикатодного пермеата 22 в виде кислот, оснований и растворенных газов (образующихся в результате электрохимических реакций на электродах).

Исходный раствор поступает через штуцеры подачи исходного раствора I с правой и левой торцевых поверхностей корпуса аппарата 6, при этом за счет поперечных перегородок 12 и полимерной ленты в аппарате образуются два контура разделения раствора.

Одновременно с подачей исходного раствора в аппарат подается вода (через штуцеры ввода 10 и вывода 16 охлаждающей воды), которой заполняется коллектор для протекания охлаждающей воды, образованный между корпусом аппарата 6, пленкой 23, внешними трубками 7, перфорированной трубкой 20, крышкой 3 и втулкой 15. Штуцеры 10, 16 расположены в сечении корпуса аппарата 6 (под углами (-90°) и 90° от горизонтальной оси) на расстоянии 95 мм от края торцевых поверхностей корпуса аппарата.

Исходный раствор, протекая по всему межмембранному каналу (где расположена сетка-турбулизатор 33), очищается от катионов и анионов, поступает через эллиптические щели 13 во внутреннюю трубку 5 (с четырьмя эллиптическими проточками 30 и малыми эллиптическими проточками 28) и выводится в виде ретентата через штуцеры 18.

На внешней поверхности рулонного элемента 8 установлена резиновая манжета 9 во избежание байпасирования охлаждающей жидкости, минуя внутреннюю поверхность рулонного элемента 8 (между соседними пленками 23). В крышке 3 выполнены кольцевые проточки под прокладки 19, в которые вставлены концы внешних трубок 7 и перфорированных трубок 20.

качестве охлаждающей воды может использоваться водопроводная или дистиллированная вода температурой 278...288 К. Полимерная лента герметично приклеена при скручивании рулонного элемента к поверхностям прикатодных 34, прианодных 35 мембран. В ходе разработки промышленного дизайна электробаромембранного аппарата рулонного типа были рассмотрены основные конструкции подобных аппаратов, для выявления их сильных и слабых сторон в процессе эксплуатации. Была предложены конструктивные особенности аппарата, позволяющие снизить гидравлическое сопротивление, увеличить общую площадь мембран и площадь охлаждающей поверхности.

Список использованных источников

- 1. Лазарев, С.И. Программное обеспечение для расчета конструктивно-технологических параметров электробаромембранного аппарата трубчатого типа / С.И. Лазарев, Т.А. Хромова, Д.А. Родионов // Виртуальное моделирование, прототипирование и промышленный дизайн [Электронный ресурс]: материалы междунар. науч.-практ. конф. Тамбов: Издательский центр ФГБОУ ВО ТГТУ, 2021. С. 276—278.
- 2. Современное конструктивное оформление электромембранных процессов / И.С. Седоплатов, О.А. Ковалева, П. Луа [и др.] // Машины, агрегаты и процессы. Проектирование, создание и модернизация: материалы междунар. науч.-практ. конф. Санкт-Петербург: НИЦ МС, 2023. N = 6. C. 75 78.
- 3. Пат. № 2788979 РФ, МПК В01D61/46. Электробаромембранный аппарат рулонного типа / С. В. Ковалев, Д.И. Кобелев, О.А. Ковалева, П. Луа, В. Ю. Рыжкин; заявитель и патентообладатель ФГБОУ ВО «Тамбовский государственный университет имени Г.Р. Державина. № 2022121117; заявл. 03.08.2022; опубл.: 26.01.2023, Бюл. № 3. 20 с.
- 4. Седоплатов, И. С. Проектирование конструкции мембранного аппарата рулонного типа при помощи САПР AutoCad 2022 / И.С. Седоплатов, С.В. Ковалев, П. Луа [и др.] // Ползуновский альманах. − 2022. T. 1, № 4. C. 99–101.