Студ. А.С. Домашкевич Науч. рук. ст. преп. Д.П. Бабич

(кафедра технологии деревообрабатывающих производств, БГТУ)

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ТОЛЩИНЫ УТЕПЛИТЕЛЯ В ОГРАЖДЕНИИ КОНВЕКТИВНОЙ СУШИЛЬНОЙ КАМЕРЫ ДЛЯ Г. ПИНСКА

Ограждающие конструкции камеры имеют многослойную конструкцию и состоят из трех слоев:

- алюминиевый лист толщиной 1,5 мм;
- лист теплоизолирующего материала толщиной 150 мм;
- алюминиевый лист толщиной 1,5 мм.

В качестве теплоизолирующего материала применяется минераловатные плиты на синтетическом связующем с коэффициентом теплопроводности λ =0,041 Bt/(м²·°C). В таблице 1 представлены основные параметры утеплителей, представленные в нашем исследовании.

Таблица 1 – Применяемые утеплители

Марка утеплителя	Толщина	Коэффициент	Стоимость	
	утеплителя	теплопроводности утеплителя	утеплителя,	
	δ , mm	λ , BT/($M^2 \cdot \mathring{C}$)	руб/пачку (руб/м²)	
Техно	100	0,041	78,70 (36,4)	
НИКОЛЬ	120	0,041	67,93 (47,17)	
Технофас	150	0,041	92,5 (64,23)	
Эффект	180	0,041	89,51(62,16)	

Поскольку конструкция пола не меняется с изменением толщины слоя утеплителя, то и потери тепла через пол не будут меняться. Поэтому эти потери мы не будем учитывать. С экологической точки зрения, увеличение слоя утеплителя ведет к уменьшению расхода тепловой энергии, что приводит к уменьшению вредных выбросов при производстве такой энергии. После проведения расчетов, можем сделать вывод о том, что с экономической точки зрения увеличение толщины слоя утеплителя ведет к уменьшению потерь тепла через ограждение, что позволяет значительно экономить средства, затрачиваемые на тепловую энергию.

В таблице 2 представлены результаты расчетов экономических показателей мероприятия по энергосбережению путем увеличения увеличению слоя утеплителя. Таким образом, срок окупаемости дополнительных вложений на увеличение толщины утеплителя и для толщины слоя 120 мм составляет 1,8 года, для толщины слоя 150 мм составляет 2,3 года и для толщины слоя 180 мм составляет 1,56 года. При этом увеличение слоя утеплителя до 120 мм позволяет экономить на 16,14% тепловой энергии; 32,57% при толщине слоя утеплителя 150 мм против экономии 43,68% при толщине утеплителя 180 мм.

Таблица 2 – Экономические показатели мероприятий по энергосбережению

	Стоимость теп-		Стоимость	Разность	
Толщина слоя утеплителя, мм	ловой энергии,	Экономия	утеплителя	стоимости	Срок
	расходуемой на	стоимости	для утепле-	утеплителя	окупаемости
	компенсацию	тепловой	ния су-	по сравне-	дополнитель-
	потерь тепла	энергии,	шильной	нию с «базо-	ного утепле-
	через огражде-	руб./год	камеры,	вым» вари-	ния, год
	ния, руб./год		руб.	антом, руб.	
100	8581,628	_	8282,82	_	_
120	7195,93	1385,698	10733,53	2450,71	1,8
150	5786,55	2795,078	14615,53	6332,71	2,3
180	4832,47	3749,158	14144,51	5861,69	1,56

В ходе данной работы можно сделать вывод, что самым оптимальным вариантом будет сделать выбор в пользу утеплителя толщиной 180 мм, так как и срок окупаемости, и потери теплоты через ограждение будут минимальными.

УДК 693.093

Студ. В.С. Лисица Науч. рук. ст. преп. Д.П. Бабич

(кафедра технологии деревообрабатывающих производств, БГТУ)

ПРАКТИЧЕСКИЙ ОПЫТ ИСПОЛЬЗОВАНИЯ АВТОМАТИЗИРОВАННОЙ УСТАНОВКИ ДЛЯ СОРТИРОВКИ СЫРЫХ ДОСОК В ЛЕСОПИЛЬНОМ ЦЕХУ

Линия сортировки пиломатериалов — пакетоформирующий комплекс, обеспечивающий разделение досок по сорту и размерам. Она позволяет сортировать материалы как естественной влажности, так и после предварительной сушки. Состав линии подбирается с учетом конкретных условий применения и пожеланий заказчика. При необходимости комплекс дополняется пакетоформирующей машиной, торцовкой и другим оборудованием.

Автоматические линии сортировки сухих и влажных пиломатериалов служат для распределения пиломатериалов по группам, объединяющим породу, качество, размеры (толщина, ширина, длина), степень обработки (обрезные, необрезные) а также их назначению.

Типы линий сортировки.

Для сырых пиломатериалов. Ключевое отличие таких линий в отсутствии расштабелера. Доски поступают для сортировки сразу после распиловки. При условиях большой производительности их конструкция позволяет устанавливать две отдельные линии сортировки для центральных и боковых досок. На выходе, как правило, предусмотрена пакетоформирующая машина для пакетирования.