
454

УДК 004.432

Student D.A. Astrouski

Scientific supervisor Senior Lecturer E.V. Kryvonosova
(Department Intercultural Communication and Technical Translation, BSTU)

PYTHON INTERPRETERS AND WHY MYPY IS OUR FUTURE?

High-level programming languages work inside much more compli-

cated than it seems to be. High-level programming languages are popular in

the market today because everyone can start working on them much faster

than using some assembly code or c, java and others, and the popular con-

clusion is that they are just slower and they have less instruments for de-

velopers. There is some truth inside, but not everything is that easy and

there are many reasons why they are still relevant for market purposes.

Translators are used to translate our readable code into machine one.

There are two types of them: compiler and interpreter. Compiler reads all

the code we have and converts it to machine code at once, and the inter-

preter is doing the same, but it reads the code line-by-line in real time.

Most high-level languages like JavaScript, Python and Ruby are using in-

terpreters. If we have a large application with a little bug on 2538’s line of

code in one of 400 libraries, the interpreter solves this problem by editing

each line of code without recompiling. Interpreters are more convenient for

large cross-platform applications because they do not need to rewrite code

for each hardware architecture.

Why do low-level languages for some fast applications do not use in-

terpreters? Popular misconception is that this technology was not as popu-

lar during the times when programming was just coming to ‘public’. Low-

level languages need to interact with hardware directly; interpreting ab-

stractions will only reduce application speed. All the programming lan-

guages can be both compiled and interpreted, they can use all the features

like dynamic debug that we can use in stock Visual Studio and improve our

developer performance.

Now we can analyse interpreters using the popular programming

language Python with dynamic typing and its most popular interpreters:

MyPy, PyPy, CPython. All of them have the same technologies inside: they

have 3-layer memory management, global interpreter lock for multithread-

ing, magic methods support, object-oriented programming, but they have

different speed of work that can cause a lot of questions and most of the an-

swers can be obvious. Most of the interpreters are written in other lan-

guages, like C for CPython or C# for IronPython. They can create some

additional features. Python is a dynamic typing programming language, but

it can be a static typed programming language without changing the lan-

guage itself; it happened with JavaScript and TypeScript.

455

If we consider typing, dynamic typing is the advantage and disad-

vantage at the same time for the developer and for the interpreter. Pro-

grammers and computers cannot know exactly what type of data will be in-

put in the next line of code, and it needs a lot of checks under the hood that

are slowing the system down. For some newbies, it would be great not to

waste their time thinking of what type to use, and nothing requires keeping

in mind what type of variable will be there.

We can use DocStings and mark it for IDE, but anyway it will not be

as easy as static types, and we cannot specify variables that are announced

in the code. DocString is a comment for developers, but the interpreter usu-

ally ignores it.

In 2015, Python 3.5 was released, and the most discussed feature was

type annotation, which allows specifying the type for each variable on the

IDE level (but not the interpreter), making it easy for linter to mark all the

necessary data. Using this feature, dynamic typing language cannot work

with speed as a static typed variable, but MyPy fixed it. All interpreters are

using static typing under the hood all the time, but the way they realized

what type is used for a variable was never as easy as with type annotations

with MyPy.

Typing is not the only thing that is used to optimize the code. A PyPy

counts as a faster interpreter because it uses JIT (Just-in-Time) compilation.

But MyPy has a lot of other features, such as custom Garbage Collection

(used to clear memory), custom PyCache (used to keep bytecodes that are

not changed and frequently used), and with all these features the interpreter

can work as fast as C and other low-levels in most cases keeping all the in-

terpreter features.

There are still some features that could be hard to implement without

low-level languages; but with these features, there are no reasons to use low-

level languages for all the scripts that we want to write.

REFERENCES

1. R. Nystrom. Crafting Interpreters: A Handbook for Making Pro-

gramming Languages. Genever Benning, 2021.

2. A. Ranta, Implementing Programming Languages. An Introduc-

tion to Compilers and Interpreters College Publications, London, 2012.

3. M. L. Scott. Programming Language Pragmatics. Morgan Kauff-

man, 2006.

