(кафедра физико-химических методов и обеспечения качества, БГТУ)

ОЦЕНКА ТОЧНОСТИ РЕЗУЛЬТАТОВ КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ

Качество тканей характеризуется совокупностью свойств, обусловливающих их пригодность удовлетворять определенные потребности в соответствии с назначением. Свойства зависят от процентного содержания компонентов волокон ткани, содержание которых должно контролироваться.

Метод количественного определения состава текстильных изделий установлен в ГОСТ ISO 1833-2011. Стандарт состоит из нескольких частей и устанавливает методы определения количественного химического анализа смеси различных волокон: полиамидных и некоторых других волокон (ГОСТ ISO 1833-7-2011), смеси целлюлозного и полиэфирного волокон (ГОСТ ISO 1833-11-2011), смеси акрилового, модифицированных акриловых, эластановых, поливинилхлоридных волокон и некоторых других волокон (ГОСТ ISO 1833-12-2011).

Методы состоят в растворении волокон в различных реактивах: водном растворе муравьиной кислоты, 75% серной кислоте, диметилформамиде. Нерастворимый осадок собирают, промывают, сушат и взвешивают. Процентное содержание волокон определяется по разности массы образца и массы нерастворимого остатка. В соответствии с требованиями ГОСТ ISO/IEC 17025 лаборатория должна оценивать точность результатов измерений неопределенностью.

Цель работы — оценить неопределенность количественного химического анализа волокон по ГОСТ ISO 1833-2011 (ч.7, 11, 12).

Для оценки неопределённости используют два основных подхода: "моделирования" и "эмпирический". Метод моделирования основан на модели, связывающей измеряемую с влияющими величинами и определении вклада каждой величины в неопределённость.

Моделью результата количественного определения состава волокон является формула, по которой рассчитывается результат. Влияющими величинами являются: масса сухого образца, масса сухого остатка, поправочный коэффициент изменения массы нерастворимого компонента в реактиве и сходимость результатов.

В соответствии с моделью были оценены стандартные неопределённости всех входных величин и стандартная суммарная неопределенность с учётом весовых коэффициентов. Полученные значения расширенной неопределенности приведены в таблице 1.

Таблица 1- Расширенная неопределенность измерений

Вид ткани	ГОСТ	U, % отн, при <i>P</i> =0,95 и <i>k</i> =2
хлопок/полиамид	1833-7-2011	0,581
хлопок/полиэфир	1833-11-2011	0,504
вискоза/акрил	1833-12-2011	0,654

В соответствии с международными рекомендациями по оценке неопределённости для учёта полноты всех влияющих факторов необходимо использовать несколько методов оценки неопределённости.

Тем более, что некоторые факторы, влияющие на точность измерений, такие как: концентрация кислот, время разрушения в кислой среде, подготовка пробы, не были учтены в модели.

Для оценки неопределенности эмпирическим методом были использованы показатели точности, полученные при проведении внутрилабораторного эксперимента. Были определены стандартные отклонения повторяемости $S_{\rm R}$, и внутрилабораторной воспроизводимости $S_{\rm R}$, а также лабораторное смещение по разности измеренного значения количественного химического анализа по ГОСТ ISO 1833-2011 и значения, полученного с использованием метода роспуска проб по СТБ 2447-2016.

Результаты расчетов приведены в таблице 2.

Таблица 2 – Показатели точности измерений

Вид	ГОСТ	₱, %	S _r , %	$S_{\rm r}$, %	S _R , %	$S_{\rm R}$,	₫, %	U, %	Ū , %	
ткани	1001	1, /0	Dr, 70	ОТН	DR, 70	%отн	4 , 70	ОТН	ОТН	
хлопок/ полиамид	1833-7	70,65	0,094	0,133	0,096	0,136	-0,090	0,427	0,429	
		85,56	0,059	0,068	0,059	0,069	0,065	0,233		
		57,64	0,110	0,191	0,111	0,193	0,080	0,626		
хлопок/ полиэфир	1833-11	29,67	0,056	0,191	0,057	0,193	-0,038	0,553	0,530	
		44,26	0,094	0,212	0,095	0,215	-0,079	0,652		
		69,25	0,082	0,118	0,082	0,118	0,080	0,385		
вискоза/ акрил	1833-12	27,24	0,094	0,347	0,083	0,306	-0,029	0,853	0,919	
		61,96	0,126	0,204	0,126	0,204	-0,051	0,634		
		9,65	0,048	0,493	0,047	0,492	0,024	1,270		

Стандартная неопределенность с использованием показателей точности была рассчитана как корень квадратный из суммы квадратов: стандартного отклонение внутрилабораторной воспроизводимости; среднего смещения; неопределенности метода, используемого для оценки смещения (СТБ 2447-2016) и стандартного отклонения при оценке смещения.

Как видно из представленных результатов, расширенная неопределенность, полученная двумя методами, приблизительно равна (различия статистически незначимы по критерию Фишера), что свидетельствует о достоверности полученных оценок неопределенности.