634.0.3

K-94

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ БССР

Белорусский технологический институт имени С. М. Кирова

На правах рукописи

н.Ф. кусакин

ИССЛЕДОВАНИЕ СКОЛА ДЕРЕВЬЕВ ПРИ СРЕЗАНИИ И ПОВАЛЕ ИХ БЕЗ ПОДПИЛА ВАЛОЧНЫМИ МАШИНАМИ (ТИПА ВТМ-4)

(диссертация написана на русском языке)

Специальность 05.420. Машины, механизмы и технология лесоразработок, лесозаготовок и лесного хозяйства

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических паук

634.0.3 K-94

> MUHINCT ETCTEO BEICHELLO N CPETH ELO OEPASOBAHUA OEPASOBAHUA ECCP

Белорусский технологический институт имени С.М.Кирова

На правах рукописи

Lixin]

Н.Ф.КУСАКИН

ИССЛЕДОВАНИЕ СКОЛА ДЕРЕВЬЕВ ПРИ СРЕЗАНИИ И ПО-ВАЛЕ ИХ БЕЗ ПОДПИЛА ВАЛОЧНЫМИ МАШИНАМИ (ТИПА ВТМ-4)

(диссертация написана на русском языке)

05.420. Машины, механизмы и технология лесоразработок, лесоваготовок и лесного хозяйства

Автореферат

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Центральном научно-исследовательском и про -- ектно-конструкторском институте механизации и энергетики лесной про-мишленности (ЦНИ/МЭ).

Научный руководитель кандидат технических наук, старший научный сотрудник М.А.ПЕРФИЛОВ.

Официальные оппоненты:

Доктор технических наук, профессор Д.К.Воевода
Кандидат технических наук, доцент Н.Ф.Ковалев
Ведущее предприятие Крестецкий леспромхоз
Автореферат разослан " " 1972 г.
Защита состоится " " 1972 г.

на заседания Сотета Белорусского технологического института имени С.М. Кирова, г.Минск, ул. Свердлова, ІЗ, ауд.

С диссертанией можно ознакомиться в библиотеке института.

Ваши отвивы по автореферату в ДВУХ ЭКЗЕМПЛЕРАХ С ЗАВЕРЕННИИ ПОДНИ-СЯМИ просим направлать в адрес Совета

> Ученый секретары Совета канд. техн. наук, доцент

И.М. Плехов

В настоящее время проблема полной механизации и автоматизации производственных процессов в лесной промышленности и особенно лесосечных работ приобретает важнейшее значение. Ее решению во многом способствовали работы К.М.Ашиенази, И.В.Батина, А.Л.Бершадского, Г.А.Вильке, Д.К.Воеводы, С.А.Воскресенского, Л.Е.Грубе, С.Ф.Орлова, В.Б.Прохорова, Б.А.Таубера и др., которые проводились и ведутся во многих институтах и заводах (ЛТА им.Кирова, ЦНИИМЭ, МЛТИ, АТЗ, ОТЗ и др.). Сейчае уже созданы и рекомендованы к серийному производству образцы машин, например, ВТМ-4 и ЛП-2, которые в корне шеняют существующую технологию лесосечных работ и в некоторой мере решают эту пробиму. Однако проверка этих машин и в частности ВТМ-4 в производственных условиях выявила и их некоторые недостатки, к одному из которых относится скол комля у части деревьев.

Изучением скаливания и раскалывания древесины в основном на малых образцах занимались многие исследователи, например, Д.И.Журавский, И.И.Бобарнков, С.И.Ванин, Л.М.Перелыгин, Н.Л.Леонтьев, Баушингер, Тетмайер, Джонсон и др. Некоторым вопросам образования окола у деревьев при срезании и повале их без подпила валочными машинами посвящени работы И.Ф.Верхова, В.П.Ермольева и Г.И.Старкова.

О необходимости дальнейшего изучения образования скола у деревьев в процессе их валки и его устранении говорит следующее:

во-первых, скол недопустим по технике безопасности, особенно при валке деревьев моторичми пилами, где происходит почти 30% несчастных случаев с лежльным исходом от общего их количества в леспромхозах:

во-вторых, скол повреждает наиболее ценную комлевую часть дерева; в-третьих, скол может быть одной из причин серьезных поломок ва лочной машины:

в-четвертих, количество сколов при работе B1M-4 растет с увели че-

нием дламетра срезаемых деревьев на вксоте груди d_{13} (по результатам госиспытаний ВТМ-4 за 1966-1967 гг. количество только видимых сколов-отщепов составило более 20% прв. $d_{13} \ge 32$ см).

Веиду этого в программу исследований были включены следующие задачи:

- I. Изучить действие основных сил на недопиленную перемычку (недопил) дереве при срезании и вовале его без подпила валочнуми маши нами, установить причины и механизм образования скола, обосновать
 частные и общие помазатели опасного состояния дерева и сколу.
- 2. Экспериментально на деревьях определить значения частных показателей прочности дерева при сколе и установить их связь с основными размерами недопиле и дерева.
- 3. Определить основные требования к режиму срезания и повала деревьев без подпила и без скола и оценить возможность их выполнения валочно-трелевочной машиной ВТМ-4.
- 4. Провнализировать систему гидроприводов механизмов срез ания и повала опытного образца ВТМ-4, установить ее влияние на образование скола и направленность повала деревьев, наметить пути ее усовершенотвования.

І. Теоретическая часть

Причины и механизм образования скола деревьев Действующие на дерево силы (вес дерева G_g , ветровая нагрузка P_g и усилие валочного рычага P_p , рис.1) при срезании и повала его без подпила валочной машиной (ВТМ-4) в общем случае вызывают в недопила дерева сложное напряженное состояние: сжатие, косой изгиб, кручение и сдвиг, в результате чего суммарное непряжение G_{con} , действующее вдоль волокон недопила в зоне пропила, где образуется скол; слагается из напряжения от сжатия G_c , напряжения от изгиба G_c

напряжения от кручения \mathcal{C}_κ , напряжения от сдвига по оси у \mathcal{C}_y .

Знак G_{twn} зависит от величины и совладения действующих на дерево сил с направлением повала, то есть с силой Pp. При совладении нап равлений сил G_{g} и Pp с Pp оно положительное, а при обратном нап равлении — отрицательное, если сила Pp и момент от нее малы по сравнению с G_{g} и P_{p} .

Поперек же волокон недопила действует поперечная сила $Q_{\mathbf{z}} = (\sum \mathbf{M}_{\mathbf{y}})'$, где $\sum \mathbf{M}_{\mathbf{y}} - \mathrm{сумм}$ а моментов от внашних сил относительно оси у, рис.1).Действие $Q_{\mathbf{z}}$ определяется величиной и знаком $G_{\mathrm{сумм}}$: при максимальном + $G_{\mathrm{сум}}$ сила $Q_{\mathbf{z}}$ раскалывает ствол, при минимельном — $G_{\mathrm{сум}}$ сила $Q_{\mathbf{z}}$ прижимает ствол к недопилу.

Анализ действия $G_{\text{сум}}$ и $Q_{\mathbf{z}}$ на недопил показал, что опасность скола в сторону ствола возникает тогла, когда вдоль волокон недопила в зоне пропила действуют наибольшие суммарные напряжения $G_{\text{сумм}}$ положительного знака, а поперек волокон — раскалывающая сила $Q_{\mathbf{z}}$. Скол дерева происходит при достижении $+G_{\text{сум}}$ и $Q_{\mathbf{z}}$ предельных значений $+G_{\mathbf{g}}$ и $Q_{\mathbf{g}}$, которые в свою очередь зависят от размеров недопила, породы и диаметра деревьев.

Так как $G_{\text{сум}}$ в зоне пролида имеет наибольшее положитвльное значение тогда, когда суммарный момент от внешних сил действует в направлении повада, то с увеличением опасности скола деревья стре - мятся упасть в этом же направлении. Наоборот, с уменьшением опас - ности скола деревья стремятся упасть в обратном направлении.

Показатели опасного состояния дарева к сколу совокупное действие ${\tt G}$ и ${\tt Q}_{\tt B}$ характеризуют опасное состояние дерева к сколу конкретным образом, так его смол может быть дос-

тигнут либо большим G_8 и меньшим Q_8 , либо наоборот. Поэтому + G_8 и $Q_{_{\rm B}}$ являются частными показателями опасного состояния дерева к сколу.

С другой стороны как + G_8 , так и Q_B (вернее касательные напряжения \mathcal{T}_2 от силы Q_B) вызывают искривление поперачных сечений недопила, предельная деформация которого может быть выражена углом повороте плоскостей пропила друг к другу

$$\theta^{g} = \theta_{m}^{g} + \theta_{\alpha}^{b} = \frac{M_{g} \cdot h_{n}}{E \cdot J} + \frac{Q_{g} \cdot S(z_{c})}{G_{z,t} \cdot J \cdot B(z_{c}) \cdot \cos \gamma^{c}} , \qquad (1)$$

где $\Theta_{\rm M}^{8}$ — угол поворота сечения недопила от предельного изги — бающего момента ${\rm M_B}$;

 $\Theta_{\mathbf{Q}}^{\mathbf{B}}$ — угол поворота сечения недопила от предельной раскалывающей силы $\mathbb{Q}_{\mathbf{B}}$;

hn - высота пропила;

Е - модуль упругости при изгибе;

— момент инерции сечения недопила;

 $S(z_c)$ - статический момент части недопила относительно ней - тральной оси, параллельной основанию;

G-, t - модуль сденга;

 $\delta(x_c)$ - ширина недопила по нейтральной оси;

 \mathcal{T} — угол наклона по отношению к направлению Q_B касательной к контуру недоцила в точке пересечения его ней — тральной осью.

Так как угол θ^6 характеризует опаснов состояние дерева к сколу, учитывая одногременно изменение как G_6 , так и Q_{-B} , то он ивляется общим показателем опасного состояния дерева к сколу.

 Π РИМЕЧАНИЕ: Строго говоря, величина Θ^8 зависит от совпадения дей ствия сил С, и Р, (и их величин) с направлением повала, а также от скорости приложения силь P_p . При содпа — дении действия сил G_3 и P_B с P_p , а также при статическом карактере приложения силь P_p к дереву угол Θ^8 имеет на-. эмерене выпанеми

Ввиду того, что угол 9 равен предельному углу наклона дерева от аго начального положения, то опасное состояние дерева к сколу в оди наковой мере можно характеризовать обоими показателями.

Общий показаталь опасного состояния дарева к сколу θ^6 нозволил определить предельные воздействия на деревья со стороны внешних сил, превышение которых может привести к их сколу. К ним, например, отно-CHTCH:

Предельный момент Ма при изгибе недопила:

$$M_8^{4H} = G_8^{min} \cdot W_P \left(1 + \alpha/R_y\right). \qquad (2)$$

Предельное напряжение G_g^{**} при чистом изгиба с недолила:

$$G_{g}^{\text{4.M}} = G_{g}^{\text{min}} \left(1 + \alpha / h_{y} \right) \tag{3}$$

Опасный угол наклона дерева Ψ_{8} , при котором оно скаливается от лействия собственного веса:

$$\mathcal{G}_{6}=$$
 corc sin $\left[\frac{(G_{6}^{\text{vir}}+G_{9}/F_{n})\mathcal{W}_{p}}{G_{3}h_{3}(1+\mathcal{A}/h_{9})}+\frac{\mathcal{Z}_{\text{u.r.}}}{h_{3}}\right]$. (4) Предельное усилие P_{p}^{8} нажатия валочного ричага ВТМ-4 на дерево

по условию прочности древесины на скол:

$$P_{p}^{\delta} \leq \frac{(G_{\delta}^{VM} + G_{\delta}/F_{H}) \cdot W_{p}}{h_{p} + \alpha}$$
 (5)

В формулах (3,4,5,2) приняты обозначения:

G = 0.80 G - минимальное значение предельного напряжения при сколе недопила у деревьев, определенное опытным путем (см. экспериментальную часть);

> Wp - момент сопротивления сечения недопила для растянутых волокон:

- высота приложения раскалывающего усилия (см. экспериментальную часть):

F. - плотадь сечения недопила;

h. - высота положения центра тяжести дерева от плоскости пропила:

Зу.т - расстояние от центра тяжести сечения недопила до оси дерева:

h. - высота приложения усилия валочного рычага;

$$\alpha = \frac{E \cdot S(\mathcal{Z}_c)}{h_n \cdot G_{z,t} \cdot B(\mathcal{Z}_c) \cdot \cos \gamma}$$

Остальные обозначения приведены выше.

Скорости надвигания пильного органа для срезания деревьев без скола

От действия на срезаемые деревыя, особенно имеющих наклов в сторону повала, попутного ветра силой 5:6 баллов или валочного ричага они начинают падать со скоростью свободного падения или превышаю шей ее. Чтобы у деревьев не было скола, валочная машина (ВТМ-4) должна обеспечить необходимую для этого скорость надвигания пильного органа Ц, которая при свободном падении деревьев может быть оп релелена по формуле:

$$u = \frac{\kappa \cdot d_n}{0.2\sqrt{h} \left(\ln \frac{y_2}{y_0} - \ln \frac{y_1}{y_0} \right)} , \qquad (6)$$

К - толцина перерезеемого слоя, выраженная в долях диамет rne ра дерева в плоскости пропила d.:

h - высота дерева;

У - начальный наклон дерава:

 $\mathcal{Q} = \mathcal{G} + Q^6$ — предельнодопустимый угол наклона дерева без возникнове — ния скола перед началом перерезания слоя толщиной $\kappa \cdot d_n$ (рис.16);

 $g_2 = g_0 + \theta_2^6$ — предельнодопустимый угол неклона дерева без появления скола после перерезания слоя толщиной к d_n (рис. Іб);

Влияние системы гидроприводов механизмов срезания и повала опытного образца БТМ-4 на образование скола и направленность повала деревьев

Привод механизма срезания ВТМ-4 осуществляется с помощью гидромотора, а привод механизма повала — от гидроцилиндра (рис.2). Питатотся эти механизмы от одного источника, а жидкость подводится к ним по нерегулируемым трубопроводам, соединенным параллельно. При одновременной работе этих механизмов поступление в них жидкости определяется теми сопротивлениями, которые она должна преодолеть. Для механизма срезания — это сопротивление перерезаемых волокон дерева, а для механизма повала — сопротивление повалу дерева. Поскольку срезание дерева должно быть непрерывным (особенно для опасных к сколу деревьев), то в гидромотор всегда должно поступать достаточное для этого количество жидкости.

Расход же жилкости через гидроцилиндр механизма повала зависит в основном от остаточного давления P_{0} в его поршневой полости и приведенной к штоку массы М срезаемого дерева и валочного рычага, то есть:

 $Q_{p} = S_{i} \int_{t_{o}}^{t_{i}} \frac{S_{i} \cdot p_{i} - S_{2} \cdot p_{2}}{M} dt - S_{i}^{2} p_{o} \int_{t_{o}}^{t_{i}} \frac{dt}{M} , \qquad (7)$

где S_1 и S_2 - соответственно плошадь поршня в штоковой и бесштоковой полостях;

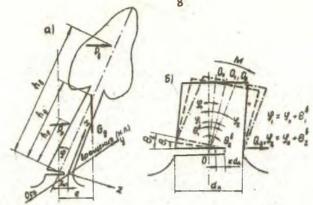


Рис. І. а)схема действия сил С, Рв и Рр на недопил дерева; б)схема к определению необходимых скоростей надвигания питьного органа для срезания дерввьев без скола.

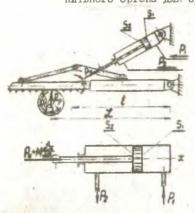


Рис. 2, Схема определения раскода жилкости через гидроцилиндр валочного ри-BIBP

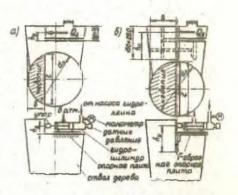


Рис.3. Схема протедения опытов по сколу недопила у деревьев: а)летом, б)зимой.

 $P_{\rm I}$ и $P_{\rm 2}$ — соответственно давление нагнетания и слива; + — время процесса.

Из уравнения (7) видно, что при м — м $_{\rm min}$ и $_{\rm P_0}$ — 0, но $_{\rm +}$ \neq 0 (то есть когда у срезаемых деревьев опасность скола увеличивается, и они под действием внешних сил отходят от валочного рычага) $Q_{\rm p}$ — $Q_{\rm p}^{\rm max}$. С другой стороны, при м — м $_{\rm max}$ и $_{\rm P_0}$ — $P_{\rm max}$ (то есть когда у срезаемых деревьев опасность скола уменьщается и они прижимаются к валочному рычагу, стараясь упасть через него) $Q_{\rm p}$ — $Q_{\rm p}^{\rm min}$

Поэтому в первом случае в гидромотор пилы будет поступать очень мало жилкости, и срезение опасного к сколу дерева будет либо очень медленным, либо совсем прекращено, а его повал, насборот, ускорен - нем; во втором же случае скорость срезения не опасных к сколу де - ревьев изменится незначительно, а скорость их повала будет совершенно недостаточной (если не совсем отсутствовать) для повала дерева в нужном направлении.

Экспериментальная запись процессов срезания и повала деревьев машиной БТМ-4 на ленту осциллографа H-700 подтвердила правильность проведенного выше анализа.

Следовательно, система гицроприводое механизмов срезания и повала у опытного образца ВТМ-4 либо способствует образованию скола у тех деревьев, у которых опасность скола налицо, либо на обеспе чивает нужного направления повала тех деревьев, у которых опасность скола отсутствует.

П. Экспериментальная часть

Поскольку в литературе нет экспериментальных данных как о частных, так и об обиих показателях опасного состояния деревьев к сколу, определение же их значений на деревьях при работе валочных ма вин весьма затруднительно, так как практически очень трудно достаточно точно установить величины, направление, характер и места приложения действующих на дерево сил, а экспериментальное определение напряжений в древесине дерева в зоне пропила очень сложно. Поэтому мы вынуждены были пойти по пути замены внешних сил G_3 , P_B и P_p эквивалентной им силой Q_8 (рис.3), которая в некоторой мере будет вызвать аналогичное действие на дерево, в частности изгиб недопила и раскальтвание ствола в зоне образогания скола.

Это позволит определить величину предельных поперечных раскалывающих сил $Q_{\rm B}$ и изгибающих моментов ${\rm M_B}$, при которых происходит скол недопила у деревьев. Далее приняв закон распределения напряжений в наиболее опасном поперечном сечении недопила, мы можем определить те предельные напряжения $G_{\rm g}$, при которых склаживается дерево.

Усилие Q в к недопилу дерева для его скола прикладивалось с помощью специальной установки переносного типа (рис.3), которая состояла из гидроцилиндра со специальным, очень прочним упором, установленном на штоке, опорной плить, бензиномоторной пиль с на - сосом от гидроклина и шлангов. Запись процесса скола недопила у дерева производилась на ленту осциллографа Н-700 (записывалось давление нагнетания в поршневой полости гидроцилиндра).

Деревья для опытов выбирались с правильной круглой формой ствола в комлевой части, опыты проводились в Крестенком леспромходе в
лесу летом 1967 г., зимой и осенью 1968 г. Древесина деревьев была
талой и мералой. Опыты проводили на лесосеке и к ным приступали сразу же после повала деревьев, чтобы влажность и физическое состояние
деревьев были такими, какие они есть в натуре. Так как при работе
ВТМ-4 наиболее подвержена сколу ель, то она была принята за основ ную породу для исследований. Для сосны, березы и осины опыты прово-

делись в меньших количествах, чтобы сравнить их прочность с елью. Всего было выполнено 339 наблюдений по сколу недопила у деревьев.

Предельное раскалывающее усилие $Q_{\mathbf{B}}$ для скола недопила у деревьев определяли по формуле:

$$Q_g = \kappa \cdot P_{Hr} f$$
 , (8)

где K - коэўфициент, учитывающий потери на трение в гидропилинд ре, K=0.99;

Р_{нг} - максимальное давление в поршневой полости гидропалиндра в момент скола недопила;

f - площадь поршия гидроцилиндра.

Предельный изгибающий момент $M_{\rm B}$, соответствующий сколу недопила у деревьев определяли по формуле:

$$M_{B} = Q_{B} h_{y} , \qquad (9)$$

где h_y — высота приложения усилия Q_B (рис.3): для летних опытов h_y = 5 см; для осенних h_y = 17 см; для зимних h_y = 14 ÷ 25 см.

Предельное напряжение G_g , при котором происходит скол недопила у деревьев определяли по формуле:

$$G_g = \frac{M_B}{V_P} \qquad (10)$$

Сопротивление раскалуванию S определяли по формуле:

$$S = \frac{Q_B}{\rho}$$
, (II)

где 🔑 - длина линии скола недопила без коры.

Статическая обработка результатор опытов показала, что между логариймом предела прочности ${}^{6}_{6}$ и толициюй недопила δ для определенных диаметров деревьев на высоте груди $d_{4.3}$ (как и между

 e_4 e_6 и d_{13} при определенной относительной толшине недопила) существует обратная корреляционная связь высокой достоверности. Между S и δ установлена прямая корреляционная связь.

В таблице I приведены (для примера) коаффициенты корреляции между ${\bf G}_{\bf S}$ и ${\bf S}$, а в таблице 2 — между ${\bf G}_{\bf S}$ и ${\bf G}_{\bf LS}$ (время проведения опытов — осень, древесина талая, температура воздуха ${\bf 8-O^OC}$).

Таблица I Коэффициенты корреляции между логарифмом предельных напряжений и толимной недопила

Порода деревь- ев	Диаметр на вы- соте груди d _{4.3}	интегвал тол- дин недопила в долях d _п	— 7	Ошибка коэйўл- циента корре- ляция ± М г	Показа- тель досто- вернос- ти 7	Число наблю- дений
Ель	20	0,200+0,495	0,91	0,050	18,2	16
Ель	24	0,184+0,500	0,98	0,014	70,0	8
Ель	28	0,111+0,453	0,94	0,038	24,7	IO
Ель	32	0,085+0,500	0,95	0,017	47,5	33
Ель	36	0,088+0,452	0,97	0,020	48,5	8
Ель	40	0,098+0,500	0,97	0,016	60,0	19
Ель	44	0,069+0,489	0,99	0,08	124,0	7

Таблица 2

Коэффициенты корреляции между логарифмом предельных напряжений и диаметром деревьев на высоте груди

Порода деравь- ев	Интервал диаметров деревьев на высоте груди d ₁₃	Толщина недопила б	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -	ошибка ко- эфициента корреляции	Показатель достовер- ности ————————————————————————————————————	
Ель	24 + 44	0,150+0,215	0,88	0,080	II,3	
Ель	20 + 40	0,260+0,350	0,93	0,057	16,3	
Ель	20 + 40	0,450+0,500	0,98	0,015	65,2	

Методом наименьших квадратов были определены численные значения уравнений связи как между $\ell_{3}G_{8}$ и δ , так и между $\ell_{4}G_{6}$ и $d_{4.3}$ вида $\ell_{4}G_{8}=\alpha+\delta\cdot\delta\left(d_{4.3}\right)$. Связь между δ и δ имеет вид δ = α' + $\delta\cdot\delta$.

На рисунке 4 показано изменение G_6 от $d_{4.3}$ у ели.

На рисунке 4 как 4 на рисунках 5 и 6 цифры у каждой кривой характеризуют толщину недопила в долях диаметра d_n . Сплошные линии приняты для летней древесины, а пунктирные — для осенней древесины.

Расхождение между средними слытными данными предельных напряжений $G_{\pmb{\theta}}$ и вычисленными по найденным уравнениям связи не превышает 15-20%, и они могут быть использованы для практических целей.

В. Расчетная часть

На оснорании опытных G_8 и Q_B и литературных денных по E, G_9 , h_9 и других нами брли определены значения величин, указанных в формулах 2,3,4,5,6,1. Ниже приведены основные результать этих рас — четов.

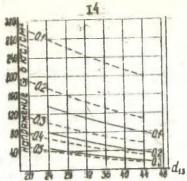
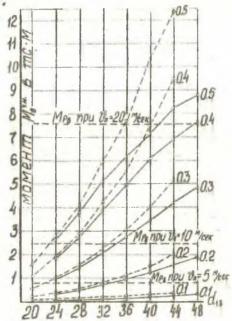



Рис. 4. Изменение предельных напряжений G_8 при сколе недопила у деревьев от их диаметра на высоте груди (порода — эль).

Рис.5. Изменение изгибающего момента $M_{g}^{v_{H}}$ от диаметра де - равьяв на высоте груди (порода - ель).

 M_{B} - момент от силы P_{g} при скорости ветра \mathcal{V}_{g} для d_{45} = 32см.

Значения угла θ^{δ} (формуж) в минутах приведени в таблице 3, из которых видно, что углы θ^{δ} для латних и осенвих условий при одинековой толщине недопила очень близки между собой и при δ = (0.3 ± 0.5) d_n имеют очень малые величины, которые уменьшаются с ростом $d_{4.5}$.

Таблица З Предельные углы наклона плоскостей пропила друг к другу

Me Де Вы	na-	Толщина недопила в долях диаметра в месте скола										
	етр церевь	0,I d,		0,2	0,2d,		0,3dn		0,4dn		0,5d,	
	в на ысота руди см	лето	осень	лето	осень	лето	осень	лето	осеяь	лето	осень	
	20	34,0	36,0	19,1	18,1	14,0	12,2	10,6	8,9	6,8	6,I	
	25	26,6	28,4	16,3	15,3	12,0	10,5	8,8	7,2	5,9	5,4	
	28	21,6	24,0	13,7	12,8	10,1	8,5	7,1	6,2	4.7	4,3	
	32	18,4	20,8	II,9	II,3	8,4	7,7	5,8	5,3	3,8	3,6	
	36	15,9	17,9	9,9	9,9	6,7	6,6	4,5	4,4	2,9	3,0	
	40	13,5	15,5	8,5	8,6	5,7	5,7	3,6	3,9	2,1	2,6	
	44	11,9	13,8	7,2	7,5	4,9	4,9	2,9	3,3	1.7	2,2	
	48	10,6	12,6	6,3	6,7	3,9	4,0	2,2	2,6	1,4	I,7	

Проверочней расчет углов Θ из предположения, что скол у деревьев возникает тогда, когда напряжения в сжатой зоне недопила от дей ствия внешних сил достигают предела прочности древесины на изгиб, показал их очень близкое совпадение с данными таблицы 3. Это горорит о том, что с достаточной для практических целей точностью можно счи тать данное напряженное состояние дерева опасным к сколу. При этом формулы для определения Θ имеют вид: для ели $\Theta^8 = \frac{0.024}{\kappa \cdot C_B}$, а для

сосны, лиственныцы, березы и осины $\theta^{g} = \frac{0.020}{\kappa \cdot d_{n}}$.

Изменение предельных моментов M_B^{NM} (формула 2) от $d_{4,5}$ у ели по-казано на рясунке δ , из которого видно, что с ростом $d_{4,5}$ момент M_B^{NM} наиболее резко увеличивается при $\delta\!\gg\!0.2\,d_n$, причем момент от ветра (горизонтальные пунктирные линии) силой 3-5 баллов (5+10 м/сек) превышает прочность деревьев на скол при толщине недопила $\widetilde{0}\!\leqslant\!0.2\,d_n$.

Расчет предельных напряжений в растянутой зоне недопила $G_8^{\text{ч.н.}}$ (формула 3) при его чистом изгибе показал, что значения $G_8^{\text{ч.н.}}$ зависят от толщины недопила и диаметра деревьев: с увеличением диаметра деревьев они уменьшаются, а с увеличением толщины недопила вначале (до $\delta = 0.2 + 0.3 \ d_n$) растут, а затем уменьшаются. При этом их численные значения колеблятся от 0.15 до 0.45 пределя прочности древесины на растяжение, в то время как предельные напряжения в сжатой зоне недопила примерно равны пределу прочности древесины на изгиб.

Расчет углов \mathcal{G}_{δ} (формула 4) от действия силы \mathcal{G}_{δ} показал, что прочность недопила обеспечивает следующий наклон деревьев в сторону довала без скола: при $\delta=0.1\,\mathrm{d}_{\mathrm{n}}$ $\mathcal{G}_{\delta}=1.3^{\circ}+2^{\circ}$; при $\delta=0.2\,\mathrm{d}_{\mathrm{n}}$ $\mathcal{G}_{\delta}=4+5.5^{\circ}$; при $\delta=0.3\,\mathrm{d}_{\mathrm{n}}$ $\mathcal{G}_{\delta}=9^{\circ}+12^{\circ}$; при $\delta=(0.4+0.5)\,\mathrm{d}_{\mathrm{n}}$ $\mathcal{G}_{\delta}=14^{\circ}+27^{\circ}$.

Изменение усилия P_p^8 (формула 5) от α_{13} показано на рисунка 6, на котором горязонтальными пунктирными линиями приведены усилия P_p валочного рычага при давлениях нагнетания в поршневой полости его гидроцилиндра P_{Hr} = 100 кгс/см2 и P_{Hr} = 120 кгс/см2. Из рисунка 6 видно, что усилия P_p при P_{Hr} = 120 кгс/см2 вполне достаточно, чтобы выверть окол деревьев α_{13} 46 см. при $0 \le 0.5 \, \alpha_n$.

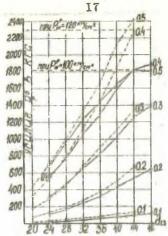


Рис.6. Изменение предельного усилия P_p^B нажатия валочного рачага на дејево по условию его прочности на скол.

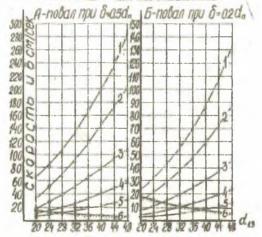


Рис.7. Изменение скоростей и от диаметра деревьев при разных углах их ваклона при нилении на учестке с глубиной пропила 0.8-0.9 d_n : $I-\Psi=6^\circ$; $2-\Psi=4^\circ$; $3'-\Psi=1^\circ$; $4-\Psi=1^\circ$; $5-\Psi=0.5^\circ$; 6- предельновозможная скорость надвигания пили ЕТМ-4 на дерево.

Для избежания повторений ниже приводятся виводы, относящиеся в основном к такому режиму работы валочной машины (ВТМ-4), который позволит уменьшить количество и размеры сколов у деревьев и улучшить направленность их повала.

Выводы

Проведенное исследование позволяет сделать следующие выводы:

- 1. Преждевременный повал или чрезмерное поджатие деревьев валочным ричагом ВТМ-4 при толщине недопила $\delta > 0.2 \, \mathrm{d}_n$ ведет к образованию у них скола и поэтому недопустим, так как предельные углы наклона деревьев без скола от их начального положения очень малы, усилия валочного ричага достаточно для образования скола у деревьев, а скоросты надвигания пильного орега ВТМ-4 недостаточна для их срезания без скола.
- 2. Опасность образования скола у деревьев зависит ст величины и совпадения наклона деревьев, ветровой нагрузки и усилия валочного рычага с направлением повала. Деревья с попутным повалу наклоном и при действии на них полутного гетра имеют наибольшую опасность образования у них скола, и она растет с увеличением наклона деревьев и силы ветра. У деревьев с образования наклоном и при действии на них встречного ветра опасность образования скола отсутствует, и она определяется только величной усилия велочного рычага.

- 3. Для уменьшения количества сколов у деревьев и улучшения направленности их повала системя гипроприводов валочной машины должна обеспечивать автоматическое регулирование скоростей сразания и повала в зависимости от напряженного состояния дерева в зоне пропила при совмещенных или раздельных источниках питания пильного и валочного органов.
- 4. Чтобы деревья были повалены в нужном направлении и срезаны без скола режим работы валочной машины (ВТМ-4) должен быть следую щим:
- а) усилие предварительного поджатия радочным рычагом дерева при его срезании не должно преявшать такого предельного значения, при котором напряжения в сжатой зоне недопила не достигали бы предела прочности древесины на изгиб и дерево не теряло бы своей устойчивости;
- б) повал не опасных к образованию скола деревьев (обратный наклон и встречный ветер) с одновременным их срезанием должен производиться при недопиле равном $0.15\,d_n$, повал же опасных к образованию скола деревьев необходимо начинать при недопиле, не превышающем $0.1\,d_n$;
- в) при глубине пропила 0,95 d_n (недопил 2 + 4 см) перерезание оставшегося недопила необходимо прекратить и валочный рычаг должен производить повал и сопровождение деревьев до такого угла наклона (не менее $7^{\rm O}$), при котором деревья далее самостоятельно падают в заданном направлении;
- г) при одновременной работе пильного и валочного органов скорость срезания деревьев должна увеличиваться с ростом опасности образова ния у них скола; угловая скорость же повала деревьев, наоборот, должна увеличиваться с уменьшением опасности образования у них скола, достигая наибольшего значения (не менее 0,36 рад/сек для валочного

рычага) при повале деревьев с обратным наклоном и при действии на них встречного встра;

- д) для повала крупных деревьев с диаметром в плоскости среза ния до 100 см, при обратном угле их наилона до 3⁰ и встречном ветре до 5 баллов валочный рычаг должен обеспечивать создание опрокидивающего момента, равного 9,5 тс.м.
- 5. Результаты настоящих исследований использованы при совершенствования гидросистемы валочно-трелевочной машины ВТМ-4, рекомендованной к серийному производству, и они могут явиться пособием при решении вопросов комплексной мехенизации срезения и повала деревьев.

По основным вопросам содержания диссертации опубликованы следуриме работы автора:

- О причинах образования скола у деревьев при работе с ВТМ-4.
 Труды ЦНИИМЭ, сб.101, 1969.
- 2. Предел прочности деревьев на скол. ВНИПИЭИ леспром. Лесо эксплуатация и лесосплав, реферативная информация № 24, 1970.
- 3. Оптимальный расход жилкости через гидроцилиндр рычага по -вала. ВНИПИЭИ - леспром. Лесоэксилуатация и лесосплав, реферативная информация № 25, 1970.

AT III32. Зак. IOI, тир. 120 экз. Объём Іп.л. 29.2.72г. БТИ им. С.М. Кирова, г. Минск, Свердлова I3.