ИСПОЛЬЗОВАНИЕ ОБОБЩЕННОГО ПОКАЗАТЕЛЯ ДЛЯ ОЦЕНКИ КАЧЕСТВА ОФСЕТНЫХ ПОЛОТЕН, МЕЛОВАННОЙ БУМАГИ И ПЕЧАТНЫХ ФОРМ

The article is devoted to problems of an estimation of quality of a surface in printed processes. For an estimation the method of the generalized (complex) parameter which essence will consist in construction of the generalized so-called function of desirability on the basis of private(individual) functions of desirability is offered.

Как правило, качество офсетных полотен, мелованной бумаги и псчатных форм оценивается целым рядом параметров: R_a , R_z , R_{max} , S_m , S и t_p , где R_a — среднее арифметическое отклонение профиля поверхности изделия; R_z — высота поверхностей профиля по десяти точкам; R_{max} — максимальная высота неровностей; S_m — средний шаг этих неровностей; S_m — средний шаг местных выступов профиля; t_p — относительная опорная длина профиля; p — значение уровня сечения профиля [1].

В последнее время для оценки качества поверхности различных изделий предложено использовать показатель фрактальной размерности D [2], отражающей принципиально иную характеристику поверхности — дробную размерность пространства, образуемую данным профилем. Он определяется через отношение натурального логарифма количества шагов по профилограмме к натуральному логарифму количества шагов по прямой, равной длине проекции кривой [3]. Исследования, проведенные в работе [2], показали, что с ростом показателя фрактальной размерности все высотные показатели профиля и одного шагового показателя уменьшаются. Однако для отыскания взаимосвязи со средним шагом выступов необходимо уравнение параболы, а для относительной опорной длины профиля — гиперболическое уравнение, что усложняет оценку качества поверхности офсетных полотен.

Поэтому в данной работе сделана попытка оценить качество этой поверхности с помощью обобщенного показателя y_0 [4], используя данные указанной работы [2].

Параметры офсетных показателей приведены в табл. 1. Обобщенный показатель y_0 определяем по формуле

$$y_0 = \sqrt[7]{d_1 \cdot d_2 \cdot d_3 \cdot d_4 \cdot d_5 \cdot d_6 \cdot d_7}$$
 или $\sqrt[7]{\prod_{i=1}^7 d_i}$, (1)

где d_i — частные функции желательности для $y_1 = D$; $y_2 = R_a$, $y_3 = R_z$, $y_4 = R_{max}$, $y_5 = S_m$; $y_6 = S$, $y_7 = t_p$.

$$d_i = \exp[-\exp(-y_i')], \tag{2}$$

где y_j — кодированное значение уровней j-го уровня частного показателя.

Для нахождения y_j сначала составим шкалу частных функций желательности d_i (табл. 2).

Шкалы желательности составлялись в следующем порядке: для D и t_p от максимального (отличного) значения, соответствующего y'=3,00, последовательно до хорошего значения (y'=1,50), удовлетворительного (y'=0,85), плохого (y'=0,00) и очень плохого (y'=-0,50) значений, для остальных параметров $(R_a, R_z, R_{max}, S_m, S)$ — в обратном порядке, т. е. отличное значение (y'=3,00) соответствует минимальному значению параметра и т. д.

Для нахождения кодированных значений y_i для конкретных значений параметров табл. 1 построили график функции желательности, где по оси абсцисс отложили кодированные уровни y, а по оси ординат — d_i .

Затем параллельно оси y_j ' провели семь параллельных прямых, на которых отложили соответствующие значения y', взятые из табл. 2.

Таблица 1

Параметры офсетных полотен

1	Марка образца	D	<i>R</i> ₂ , мкм	R_{z} , mkm	R _{max} , MKM	S_m , мкм	S, MKM	t _{fm} %
1	Unterlagtuch	1,379	5,649	23,162	32,761	128,57	42,86	18,89
2	FTC-Airprint-news	1,393	7,471	25,560	42,913	100,00	69,23	23,33
_ 3	FTC-Ruby-UV	1,467	2,684	11,005	18,403	107,50	50,59	29,07
4	FTC-Crystal	1,520	1,157	5,345	8,158	80,00	73,33	22,73
5	3 PLY Compress	1,439	0,393	2,041	4,662	88,00	48,89	11,36
6	4 PLY Compress	1,460	0,341	1,841	3,188	62,00	46,50	21,51
7	4-слойное, 3610	1,573	0,649	3,167	3,965	73,33	64,00	20,83

Частные функции желательности для параметров оптимизации

d,	y'	<i>y</i> ₁	y ₂	<i>y</i> ₃	<i>y</i> ₄	y ₅	<i>y</i> ₆	у7
1,00-0,80	3,60	1,550	0,350	1,800	3,00	60	43	30
0,80-0,63	1,50	1,500	1,250	7,800	8,00	78	51	25
0,63-0,37	0,83	1,450	2,150	13,800	13,00	96	59	20
0,37-0,20	0,00	1,400	3,050	19,700	18,00	114	67	15
0,20-0,00	-0,50	1,350	3,950	25,801	23,00	132	75	10

Таблица 1

Кодированные уровни у', d_i и y_0

No	<i>y</i> ₁	d_1	y ₂	d_2	у3	d ₃	y ₄ '	d_4	y5,*	d_5	y ₆ *	d ₆	y ₇ '	d ₇	Yii.
1	-0,20	0,295	-1,33	0,023	-0,30	0,258	-1,50	0,011	-1,50	0,011	3,00	1,00	0,661	0,597	0,101
2	-0,07	0,342	-1,50	0,011	-0,48	0,199	-1,70	0,004	0,661	0,597	-0,139	0,317	1,289	0,758	0,123
3	1,071	0,710	0,35	0,493	1,152	0,729	0,068	0,393	0,048	0,385	1,577	0,813	2,721	0,936	0,604
4	2,10	0,885	1,66	0,826	2,114	0,886	1,479	0,796	1,428	0,787	-0,396	0,226	1,205	0,741	0,681
5	0,66	0,597	2,93	0,948	2,939	0,948	2,501	0,921	1,139	0,726	1,846	0,861	-0,364	0,237	0,680
6	0,687	0,687	3,00	1,000	2,989	0,951	2,930	0,948	2,833	0,943	2,344	0,908	1,046	0,704	0,869
7	3,00	1,000	2,50	0,920	2,658	0,932	2,711	0,936	1,846	0,854	0,319	0,483	0,958	0,681	0,800

С помощью этого графика находим y' и d_i для данных табл. 1. Результаты расчетов y', d_i и y_0 (последнее значение определено по формуле (1)) представлены в табл. 3.

Из табл. 3 видно, что наибольшее значение $y_0 = 0,869$ (отличный результат) получен у офсетных полотен № 6 (фирма-производитель — Heidelberg, марка образца — 4 PLY Compress), хотя его фрактальная размерность D = 1,460 уступает размерности марки образцов № 7 (D = 1,573), № 4 (D = 1,520), № 3 (D = 1,473). Это объясняется тем, что по остальным характеристикам качества офсетного полотна его показатели лучше.

В этом проявляется преимущество обобщенного показателя y_0 , который «не пропускает» более слабые показатели, не позволяя низкие показатели компенсировать высокими значениями других показателей.

Между y_0 и D существует корреляционная связь, т. к. расчетное значение коэффициента

парной корреляции $r_{1,8} = 0,774$, что больше табличного значения $r_{\kappa_{\rm L}} = 0,7545$ (при $\alpha = 0,05$ и степени свободы f = n - 2 = 5). Эту связь можно выразить корреляционным уравнением

$$y_8 = y_0 = 3,56D - 4,65.$$
 (3)

Таким образом, наиболее высоким качеством поверхности офестных полотен обладает 4 PLY Compress фирмы Heidelberg, т. к. от $y_0 = 0.869$ больше всех остальных полотен.

Данные об износе офсетных полотен и мсло ванных бумаг приведены в табл. 4. Анализ износи офсетных полотен (табл. 4) показывает возрасти ние показателей R_a , R_z , R_{max} , S_m и снижение S и t_μ при росте фрактальной размерности D в случие продольного направления. При исследовании по перечного направления наблюдается незначительный рост фрактальной размерности, рост значений показателей R_z , R_{max} , t_p и снижение S_m , R_a , изменение показателя S неодинаково.

Таблица 4

	параметры о	фсетного	HONOH	a Heruer	nerg			
N	Образцы	D	$R_{\rm s}$, mkm	<i>R</i> ₂ , мкм	R _{max} , MKM	S _m , MKM	S, мкм	1m %
		офсетного	полотна					
1	Новое полотно в продольном направлении	2,366	0,339	2,564	3,271	77,50	43,59	29,01
2	Отработанное полотно (образец 1)	2,429	0,989	3,541	6,499	231,67	35,64	26,62
3	Отработанное полотно (образец 2)	2,417	0,710	4,152	7,849	141,00	38,11	30,11
4	Новое полотно в поперечном направлении	2,329	0,535	2,777	3,747	134,74	44,91	11,33
5	Отработанное полотно (образец 1)	2.355	0,439	2,899	3,954	85,13	41,50	18,07
6	Отработанное полотно (образец 2)	2,374	0,348	3,433	5,832	90,40	48,09	19,47
		мелованнь	іх бумаг					
7_	Magnostar, 135 г/м ²	1,244	0,386	1,231	2,570	192,22	48,06	26,01
8	Kym Ex Cote, 130 r/m ²	1,298	0,391	1,889	3,520	218,33	65,50	22,90
9	Magnomatt Satin, 135 r/m ²	1,338	0,578	2,619	4,244	184,00	43,81	20,11
10	Bereg Top Gloss, 80 r/m ²	1,362	0,681	4,110	6,639	150,00	66,67	23,33
11	Kym Ex Cote Matt, 150 r/m ²	1,453	1,343	5,139	9,807	368,00	76,67	20,11
12	Bereg Top Silk, 130 r/m ²	1.469	1 366	5 992	8 899	176.00	40.00	16.48

Шкала желательности офсетного полотна

d,	у, —	<i>y</i> ₁	y ₂	y ₃	y4	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
1,00-0,80	3,00	2,500	0,340	2,50	3,00	75	35,0	30
0,80-0,63	1,50	2,400	0,500	2,90	4,85	115	36,5	29
0,63-0,37	0,85	2,300	0,660	3,30	5,30	155	38,0	28
0,37-0,20	0,00	2,200	0,880	3,70	6,45	195	39,5	27
0,20-0,00	-0,50	2,100	0,980	4,10	7,60	235	41,0	26

Таблица 6

Кодированные уровни у' и частные функции желательности d_i для офсетного полотна

No	y ₁	d_1	<i>y</i> ₂ *	d ₂	y3'	d_3	y4'	d ₄	y ₅ "	d ₅	y6'	d_6	y7*	d_7	y 0
1	1,279	0,757	3,00	1,000	2,760	0,939	2,646	0,932	2,906	0,947	-1,0	0,011	1,50	0,80	0,475
2	1,935	0,866	-0,50	0,200	0,338	0,713	-0,235	0,222	-0,040	0,352	2,36	0,910	-0,19	6,298	0,442
3	1,753	0,841	0,584	0,573	-0,500	0,200	-0,500	0,200	1,728	0,837	0,85	0,630	3,00	1,00	0,269
4	1,039	0,702	1,358	0,773	1,961	0,869	2,026	0,876	1,179	0,735	-1,0	0,011	-2,0	0,0001	0,232
5	1,208	0,742	2,072	8,882	1,500	0,800	1,756	0,841	2,520	0,930	-0,5	0,200	-2,0	0,0001	0,367
6	0,941	0,677	2,925	0,948	0,567	0,567	0,457	0,531	2,423	0,915	-1,0	0,011	-2,0	0,0001	0,215

В связи с этим попробуем и в этом случае использовать обобщенный показатель качества поверхности y_0 .

Для офсетного полотна после износа шкала желательности выглядит, как в табл. 5.

После обработки данных табл. 4 по приведенной выше методике получили значения кодированных уровней y и d_i для всех семи параметров и обобщенного показателя y_0 , которые приведены в табл. 6. Как видно из табл. 6, после износа офсетного полотна только полотна № 1 и № 2, где $y_0 = 0,475$ и 0,442, показали удовлетворительный результат ($y_0 > 0,37$). Все остальные измерения показали неудовлетворительный результат.

Очевидно, поверхность офсетного полотна в продольном направлении имеет более равномерный характер, чем в поперечном направлении. Снижение значений $R_{\rm a}$ после выработки полотна в поперечном направлении свидетельствует о сглаживании неровностей, а возрастание фрактальной размерности — об уменьшении порядка неровностей.

Для мелованной бумаги шкала желательности представлена в табл. 7.

После обработки данных табл. 4 по приведенной выше методике получили значения кодированных уровней y' и d_i для мелованной бумаги, представленные в табл. 8.

Из табл. 8 следует, что наилучшим качеством обладает бумага N 9 (Magnomatt Satin,

135 г/м²), для которой $y_0 = 0,719$ (хороший результат). Остальные марки бумаги имеют худшее качество поверхности.

Следует отметить, что значения параметров R_a , R_z , R_{max} , S_m , S, t_p , определенные для различных видов мелованных бумаг и приведенные в табл. 4, показывают принципиально иной характер зависимости, чем для офсетных полотен. Для мелованной бумаги для высотных показателей наблюдается линейная зависимость, а для офсетного полотна — обратная. Это свидетельствует об ином структурном характере поверхности офсетного полотна. Об этом говорит и коэффициент парной корреляции между D и y_0 , равный $r_{1,8} = -0,855$, а также корреляционное уравнение

$$y_8 = y_0 = 2,804D - 1,651y_1.$$
 (4)

Представляет интерес исследование параметров поверхности печатных форм, поскольку шероховатость поверхности пробельных и печатных элементов также является одной из важнейших характеристик. Параметры печатных форм приведены в табл. 9.

Шкала частных функций желательности для печатных форм приведена в табл. 10.

Результаты расчетов y_j и d_i для данных табл. 3 представлены в табл. 11. Как видно из этой таблицы, наилучшее качество поверхности у образца № 3 (Virage, печатный), где $y_0 = 0.939$.

Таблица 7

Шкала желательности для мелованной бумаги

d_i	у'	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	У6	у 7
1,00-0,80	3,00	1,500	0,350	1,200	2,500	150,0	40	26,1
0,80-0,63	1,50	1,440	0,600	2,400	4,300	204,5	49	23,7
0,63-0,37	0,85	1,380	0,850	3,600	6,100	259,0	58	21,3
0,37-0,20	0,00	1,320	1,100	4,800	7,900	313,5	67	18,9
0,20-0,00	-0,50	1,260	1,350	6,00	9,700	368,0	76	16,5

Таблица 8 Кодированные уровни у' и частные функции желательности d_i для мелованной бумаги

Nº	y1'	d_1	y ₂ "	d ₂	y ₃ '	d_3	y ₄ '	d ₄	y ₅ '	d_5	y ₆ '	d_6	y ₇ '	d7	$\nu_{\rm tt}$
7	-0,87	0,093	2,784	0,940	2,97	0,950	2,94	0,949	1,838	0,853	1,657	0,826	3,00	1,00	0,661
8	-0,183	0,300	2,754	0,938	2,14	0,889	2,15	0,890	1,335	0,769	0,142	0,420	1,283	0,758	0,660
9	0,255	0,461	1,632	0,822	1,38	0,778	1,57	0,812	2,064	0,880	2,365	0,910	0,428	0,521	0,719
10	0,595	0,576	1,289	0,759	0,49	0,542	0,545	0,551	3,00	1,000	-0,093	0,334	1,400	0,781	0,617
11	1,825	0,851	-0,434	0,214	-0,14	0,316	-0,53	0,183	-0,50	0,200	-0,50	0,200	0,422	0,521	0,300
12	2,225	0,897	-0,542	0,182	-0,50	0,200	-0,278	0,267	2,284	0,903	3,00	1,000	-0,50	0,200	0,397

Таблица 9

Параметры печатных форм

Марка пластин	Элемент формы	<i>y</i> ₁	<i>y</i> ₂	у3	У4	<i>y</i> ₅	у6	ул
		D	R_s , mkm	R_2 , mkm	R _{max} , MKM	S_m , мкм	S, мкм	t ₁₀ %
Horsell	печатный	1,254	0,072	0,286	0,395	7,727	4,048	20,00
	пробельный	1,356	0,067	0,305	0,347	4,579	3,346	19,54
Virage	печатный	1,323	0,029	0,154	0,198	5,462	3,550	22,54
	пробельный	1,355	0,085	0,370	0,426	5,158	3,630	20,41

Таблица 10

Шкала желательности для печатных форм

d_i	у'	y ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
1,00-0,80	3,00	1,500	0,030	0,150	0,200	5,100	3,300	22
0,80-0,63	1,50	1,440	0,044	0,204	0,260	5,887	3,470	21,2
0,63-0,37	0,85	1,380	0,058	0,258	0,320	0,674	3,660	20,4
0,37-0,20	0,00	1,320	0,072	0,312	0,380	7,461	3,840	19,6
0,20-0,00	-0,50	1,260	0,086	0,366	0,440	8,248	4,020	18,8

Таблица 11 **Кодированные уровни у'и частные функции желательности d_i для печатных форм**

№	<i>y</i> ₁ ,	d_1	y ₂	dz	<i>y</i> ₃ '	d ₃	y4"	d_4	y5'	d_5	y ₆ '	d_6	<i>y</i> ₇ '	d ₇	<i>y</i> ₀
1	-0,50	0,200	0,00	0,37	1,218	0,744	-0,175	0,322	-0,169	0,306	-0,50	0,200	1,175	0,734	0,360
2	0,51	0,548	0,304	0,478	0,110	0,408	0,408	0,534	3,00	1,00	2,167	0,930	0,064	0,391	0,575
3	0,00	0,370	3,00	1,00	2,889	0,946	0,946	1,00	2,310	0,905	1,247	0,750	3,00	1,00	0,939
4	0,494	0,544	-0,5	0,20	-0,50	0,200	0,200	0,231	2,889	0,946	0,958	0,681	0,85	0,63	0,412

Остальные «не дотягивают» до хорошей оценки ($y_0 = 0,63$), а показывают лишь удовлетворительный результат.

Анализ параметров шероховатости, предлагаемых ГОСТ 2789–73 и используемых для оценки качества поверхности в печатных процессах, показал, что высотные и шаговые характеристики, также как и фрактальная размерность, не могут комплексно оценивать качество поверхности. Поэтому, на наш взгляд, для оценки этого качества лучше использовать обобщенный показатель y_0 , который позволяет объективно оценить качество поверхности печатных пластин (пробельной основы, печатных элементов), офсетных полотен, различных видов бумаг и печатных форм.

Литература

- 1. ГОСТ 2789–73. Шероховатость поверхности. Параметры, характеристики и обозначения.— М.: Изд-во стандартов, 1985. 10 с.
- 2. Кулак М. И., Пиотух И. Г., Медяк Д. М. Микрогеометрия фрактальной поверхности офсетного полотна // Труды БГТУ. Серия физ.-мат. наук и информатики. 2001. Вып. IX С. 87–92.
- 3. Федер Е. Фракталы. М.: Мир, 1991. 254 с.
- 4. Жарский И. М., Каледин Б. А., Кузьмицкий И. Ф. Планирование и организация эксперимента: Учебное пособие. Мн.: БГТУ, 2003. 184 с.