УДК 543.42+535.34

Л. Л. Гладков¹, Г. А. Гладкова² ¹Белорусская государственная академия связи ²Военная академия Республики Беларусь

РАСЧЕТ КОЛЕБАТЕЛЬНЫХ СОСТОЯНИЙ Zn-ХЛОРИНА МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ

Методом функционала плотности выполнен расчет геометрической структуры, нормальных колебаний и интенсивностей в ИК-спектре Zn-хлорина. Оптимизация геометрии показала нарушение плоского строения гидрированного пиррольного кольца, один из атомов C_b которого расположен над плоскостью макроцикла, а другой – под ней. Связь атома цинка с азотом данного кольца на 0,05 Å больше других связей цинк – азот. Пересмотрена интерпретация колебательных и тонкоструктурных электронно-колебательных спектров металлохлоринов.

Ключевые слова: металллокомплексы хлорина, расчет нормальных колебаний, метод функционала плотности.

Для цитирования: Гладков Л. Л., Гладкова Г. А. Расчет колебательных состояний Zn-хлорина методом функционала плотности // Труды БГТУ. Сер. 3, Физико-математические науки и информатика. 2024. № 1 (278). С. 39–42.

DOI: 10.52065/2520-6141-2024-278-6.

L. L. Gladkov¹, G. A. Gladkova²

¹Belarusian State Academy of Communications

² Belarusian Military Academy

DFT CALCULATION OF Zn-CHLORINE VIBRATIONAL STATES

The geometric structure, normal vibrations and intensities in the IR spectrum of Zn-chlorin were calculated using the density functional method. Geometry optimization showed a violation of the planar structure of the hydrogenated pyrrole ring, one of the Cb atoms of which is located above the plane of the macrocycle, and the other below it. The bond of the zinc atom to the nitrogen of this ring is 0.05 Å larger than other zinc-nitrogen bonds. The interpretation of vibrational and fine-structure electronic-vibrational spectra of metallochlorins has been revised.

Keywords: metallochlorins, normal coordinate calculations, DFT calculations.

For citation: Gladkov L. L., Gladkova G. A. DFT calculation of Zn-chlorine vibrational states. *Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics*, 2024, no. 1 (278), pp. 39–42 (In Russian).

DOI: 10.52065/2520-6141-2024-278-6.

Введение. Метод функционала плотности показал свою высокую эффективность при моделировании структуры, колебательных, электронных и вибронных состояний сложных молекул, таких как, например, порфирины [1–4], представляющих большой интерес как с точки зрения фундаментальных, так и прикладных исследований.

В настоящей работе представлены результаты расчета методом функционала плотности структуры и колебательных спектров Zn-хлорина (рисунок), простейшего соединения среди металлокомплексов гидропорфиринов, на основании которых предложена интерпретация экспериментальных данных. Интерес к молекулам хлоринов вызван прежде всего принадлежностью к ним таких соединений, как феофетины и хлорофиллы, играющих важнейшую роль в процессе фотосинтеза. Кроме того, хлорины показали себя как эффективные фотосенсибилизаторы, широко применяемые при лечении онкологических заболеваний методами фотодинамической терапии.

Основная часть. Ранее для изучения колебательных состояний металлокомплексов хлорина были получены ИК-спектры Zn-хлорина и Zn-7,8-диэтилхлорина (Zn-ДЭХ) [5], тонкоструктурные спектры флуоресценции этих соединений [6], а также ИК-спектры и спектры резонансного КР (РКР) Си-хлорина [7]. Выбор молекулы Zn-ДЭХ связан с тем, что присоединение двух этильных групп к гидрированному кольцу изменит динамические характеристики данной части молекулы и позволит выявить ее колебания. Экспериментальные данные были интерпретированы на основании расчетов нормальных колебаний. Поскольку для гидрированного кольца D отсутствовал проверенный набор силовых постоянных, вычисленные значения ряда частот заметно отличались от экспериментальных.

Структурная формула Zn-хлорина и обозначения атомов углерода

Для представления более надежной интерпретации в данной работе проведен расчет колебаний методом функционала плотности. При этом использовался обменно-корреляционный функционал ВРЕ и трехэкспонентный базисный набор 3*z* по алгоритму, реализованному в квантово-химической программе [8]. Процесс оптимизации геометрии был остановлен, когда компоненты градиента энергии не превышали 10⁻⁶. Затем были проведены расчеты нормальных колебаний и интенсивностей в ИК-спектрах. Отсутствие мнимых значений частот свидетельствует о достижении стационарной точки при оптимизации геометрии молекул. Масштабирование вычисленных частот не производилось.

Оптимизация геометрии показала нарушение плоского строения макроцикла. Один из атомов C_b гидрированного пиррольного кольца расположен над плоскостью макроцикла, а другой – под ней. В этом случае симметрия молекулы Zn-хлорина становится C_2 , что ниже симметрии хлорина (C_{2v}). Чтобы легче сравнивать колебания этих соединений, в дальнейшем будем рассматривать колебания в рамках симметрии C_{2v} (см. таблицу).

Сопоставление теоретических и экспериментальных данных для металлокомплексов хлорина, приведенное в таблице для колебаний A₁- и B₁-типов симметрии, основывается не только на близости частот, но и на расчетах интенсивностей ИК-полос, отнесении колебаний по типам симметрии [6, 7], а также на анализе колебательных состояний металлопорфинов и хлоринов [1–4].

Сравнение данных таблицы показывает значительные изменения в отнесении ряда ИК-полос и линий РКР. В первую очередь это относится к валентным колебаниям макроцикла, хотя есть отличия и в форме деформационных скелетных колебаний.

Отнесение частот колебаний А1- и В1-типов симметрии металлохлоринов, см⁻¹, активных в спектрах РКР и ИК-спектрах

Zn-хлорин		Си-хлорин		Zn-хлорин	
$\mathcal{V}_{\text{Teop}}$	VTC	Vик	VPKP	VИK	Форма колебаний
А1-колебания					
208	_	_	202	_	ZnN, ZnNZn
216	200	_	248	_	ZnN
349	353	350	-		mab ^A , maN ^A , ZnNa
353	362	_	366	_	ZnN 18, mab ^A , maN ^A
375	378	376	385	383	ZnN, maN ^A , mab ^A
716	728	729	730	727	ama, baN, mab
720	734	_	_	_	aNa, amH
732	748	742	744	742	aNa ^B , am ^{α} a, baN ^{α}
785	798	799	_	804	abb^{A} , ama, baN^{A}
884	899	_	900	_	ab^{D} , aN^{D} , ZnN^{D}
969	-	968	_	975	bbH ^D , $\rho(C_b)^D$, $\rho(C_a)^D$
986	_	_	998	-	$bb^{D} ab^{A} aN^{A}$
996	1008	1005	1008	1003	$ab^{A} aN^{A} ZnN^{A}$
1012	1030	-	1035	1003	$bb^{D} aN^{A} ab^{A}$
1050	1056	1050	1055	1050	$\delta(bH)^A bb^A$
1053	1056		1050	-	$\delta(bH)^B$
1126	- 1050	1145	- 1007	_	$ab^{AB} aN^{AB} \delta(bH) \delta(mH)$
1157			1152		$\delta(mH)$ aN ab
1187	1170		1152		$\delta(\mathbf{bH})^{\mathrm{D}}$ \mathbf{bb}^{D}
1286	1260	1258	1267	1265	(011), 00
1200	1200	1230	1207	1203	ab^{A} am abb
1222	1200	1210	1216	1214	ab aN ama
1250	1256	1250	1265	1314	aD, all, allia
1274	1201	1201	1303	_	$aN, o(\Pi\Pi)$
13/4	1381	1381	_	-	aN, aD, o(mH)
1421	_	1419	_	1419	HbH ^B , am ^a bb ^A
1425	-	1438	-	1440	
1440	1404	1404	14/3	14/1	
1506	1506	1499	1517	1515	$\frac{\text{bb}}{\text{am}^{\prime}}, o(\text{bH})$
1539	-	1531	1552	1507	$bb^{n,b}, am^{r}$
15/5	15/5	15/8	1600	1597	am ^a , am ⁷ , aNa ^D
1613	1622	1623	1648 D	164/	am ⁷ , am ^a , aNa ⁵
В1-колеоания					
213	_	_	218	_	ZnN, ZnNZn
215	—	-	262	-	ZnN ^A , ZnNa ^A
327	_	330	_	-	mab ^{D,B} , maN ^{D,B} , ZnN
366	—	342	-	343	ZnN, mab ^A , maN ^A
379	_	405	_	_	mab, maN, ZnN
404	—	428		_	mab ^A , maN ^A , am ^a
737	-	742	744	742	$ama^{\gamma}, am^{\alpha}, abb^{D}$
795	_	816	819	816	$abb^{A,B}$, $baN^{A,B}$, $ama^{\alpha} 4$
981	—	990	—	992	ab ^{A,D} , aN ^A abb ^D
996	—	1005	—	1003	ab, aN, ZnNa
1048	-	1050	-	1055	$\delta(bH)^{A}, bb^{A}$
1159	—	1170	1175	1175	$\delta(mH)^{\gamma}$, aN^{D} , am^{γ}
1211	_	1206	_	1215	δ(bH) ^A
1303	—	1320	1325	1323	$ab^{AD}, aN^{B}, \delta(bH)^{AD}, \delta(mH)^{\alpha}$
1321	1333				$ab^{B}, aN^{B}, \delta(bH)^{B}, \delta(mH)^{\gamma}$
1355	_	1350	1355	1351	aN^A , $\delta(mH)^{\alpha}$
1392	_	1381	1387	1384	bb ^A , am, δ(mH)
1406	_	1419	_	1419	HbH ^D , $\delta(bH)^{D}$, bb^{A} , am^{γ}
1446	1457	1459	—	_	bb ^A , am, δ (mH) ^{γ}
1501	_	_	_	1485	bb^{A} , am^{γ}
1530	1530	1522	_	1536	am, bb ^A , aN
1562	_	1578	1608	1607	am, $\delta(mH)^{\gamma}$

Примечание. Верхние индексы указывают пиррольное кольцо или метиновый мостик, причем индекс α относится к α -и β -, γ – к γ - и δ -мостикам; индекс A – к пиррольным кольцам A и C ввиду их эквивалентности; отсутствие индексов указывает на участие в данном колебании аналогичных координат всех пиррольных колец или метиновых мостиков.

Не обсуждая отнесение каждой полосы, остановимся на наиболее интересных аспектах интерпретации.

В низкочастотной области до 400 см⁻¹ в нормальных колебаниях значителен вклад координат, включающих атом металла. Так, дублет 248 и 262 см⁻¹ линий РКР был предположительно отнесен к аналогичным колебаниям Си-хлорина [7], а причиной расщепления дважды вырожденной частоты является гидрирование пиррольного кольца. Согласно нашему расчету, длина связи ZnN^D на 0,05 Å больше других связей цинк – азот. Следует отметить, что такие колебания чувствительны к природе центрального металла.

В области частот до 900 см⁻¹ в ИК-спектрах активнее неплоские колебания макроцикла. Их отнесение аналогично выполненному ранее для неплоских колебаний близких по строению молекул хлоринов и металлопорфинов [4]. Неплоским колебаниям типа симметрии В2 соответствуют ИК-полосы 652, 697, 762, 838, 853 и 892 см⁻¹ Zn-хлорина. Чувствительность полос 838 и 853 см⁻¹ Zn-хлорина к введению заместителей на гидрированном пиррольном кольце подтверждает сделанный ранее вывод о сложной форме соответствующих колебаний. Из таблицы видно, к колебаниям только гидрированного кольца относятся рассчитанные частоты 884, 969 и 1406 см⁻¹. Первое из них мы сопоставляем со слабой линией РКР 900 см⁻¹, два последних относим к ИК-полосам 968 и 1419 см⁻¹. При переходе к Zn-ДЭХ эти полосы исчезают [5]. Следует отметить, что колебательные координаты этого кольца также участвуют в ряде колебаний сложной формы (см. таблицу).

Полосы в ИК-спектрах металлохлоринов с частотами свыше 1300 см^{-1} намного интенсивнее, чем у металлопорфинов. Это означает, что изменение распределения π -электронной плотности в макроцикле при гидрировании одного пиррольного кольца приводит к значительному увеличению дипольных моментов связей, особенно для СС-связей метиновых мостиков.

Отметим, что в ИК-спектрах наиболее активны колебания γ -, δ -мостиков, тогда как в тонкоструктурных спектрах флуоресценции более активны колебания α -, β -мостиков [5, 6, 9]. Данное различие объясняется следующим образом.

Интенсивность ИК-полос описывается распределением электронной плотности в основном электронном состоянии. В свою очередь, интенсивность электронно-колебательных полос хлоринов определяется по механизму Франка – Кондона изменением геометрии молекулы при переходе из одного электронного состояния в другое. Действительно, согласно квантово-химическим расчетам [10], у молекулы металлохлорина в S₁-состоянии по сравнению с S₀ сильнее изменяются π -порядки СС-связей α - и β -мостиков, а значит, активность колебаний этих связей в вибронных спектрах будет выше (между длинами связей и их π -порядками существует хорошая корреляция).

Заключение. Методом функционала плотности вычислено строение молекулы Zn-хлорина, рассчитаны частоты и форма их нормальных колебаний. Расчет показал неплоское строение гидрированного пиррольного кольца. Пересмотрена интерпретация колебательных и тонкоструктурных электронно-колебательных спектров металлолхлоринов.

Список литературы

1. Kozlowski P. M., Jarzecki A. A., Pulay P. Vibrational assignment and definite harmonic force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field // J. Phys. Chem. 1996. Vol. 100, no 17. P. 7007–7013.

2. Березин К. В., Нечаев В. В. Расчет частот нормальных колебаний хлорина методом функционала плотности // Журн. прикл. спектр. 2004. Т. 71, № 3. С. 283–294.

3. Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins / J. M. S. Lopes [et al.] // Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 2019. Vol. 215. P. 327–333.

4. Гладков Л. Л. Молекулярная структура и колебательная спектроскопия тетрапиррольных соединений. Минск: БГАС. 2023. 216 с.

5. Гладков Л. Л., Старухин А. С., Шульга А. М. Интерпретация колебательных спектров металлокомплексов хлорина // Журн. прикл. спектр. 1987. Т. 47, № 2. С. 231–236.

6. Гладков Л. Л., Старухин А. С., Шульга А. М. Тонкоструктурные спектры флуоресценции металлохлоринов // Журн. прикл. спектр. 1986. Т. 45, № 3. С. 410–414.

7. Resonance Raman spectra of deuterated metalloporphins / K. N. Solovyov [et al.] // J. Mol. Struct. 1978. Vol. 45. P. 267–305.

8. Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets // Chem. Phys. Lett. 1997. Vol. 281, no. 1. P. 151–156.

9. Колебательные спектры хлорина и его дейтеропроизводных / Л. Л. Гладков [и др.] // Журн. прикл. спектр. 1983. Т. 38, № 4. С. 598–606.

10. Weiss C. C., Kobayashi H., Gouterman M. Spectra of porphyrins. Part III. Self-consistent molecular orbital calculations of porphyrins and related ring systems // J. Mol. Spectrosc. 1965. Vol. 16, no. 2. P. 416–450.

References

1. Kozlowski P. M., Jarzecki A. A., Pulay P. Vibrational assignment and definite harmonic force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field. *J. Phys. Chem.*, 1996, vol. 100, no. 17, pp. 7007–7013.

2. Berezin K. V., Nechaev V.V. Calculation of frequencies of normal vibrations of chlorin by the density functional method. *Zhurnal prikladnoy spektroskopii* [Journ. Appl. Spectr.], 2004, vol. 71, no. 3, pp. 283–294 (In Russian).

3. Lopes J. M. S., Sampaio R. N., Ito A. S., Batista A. A., Machado A. E H., Araujo P. T., Barbarosa Neto N. M. Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins. *Spectrochim. Acta Part A. Mol. Biomol. Spectrosc.*, 2019, vol. 215, pp. 327–333.

4. Gladkov L. L. *Molekylyarnaya stryktyra i kolebatel'naya spektroskopiya tetrapirrol'nykh soyedineniy* [Molecular structure and vibrational spectroscopy of tetrapyrrole compounds]. Minsk, BGAS Publ., 2023. 216 p. (In Russian).

5. Gladkov L. L., Starukhin A. S., Shulga A. M. Fine-structure fluorescence spectra of metallochlorins. *Zhurnal prikladnoy spektroskopii* [Journ. Appl. Spectr.], 1986, vol. 45, no. 3, pp. 410–414 (In Russian).

6. Gladkov L. L., Starukhin A. S., Shulga A. M. Interpretation of vibrational spectra of chlorin metal complexes. *Zhurnal prikladnoy spektroskopii* [Journ. Appl. Spectr.], 1987, vol. 47, no. 2, pp. 231–236 (In Russian).

7. Solovyov K. N., Gladkov L. L., Gradyushko A. T., Ksenofontova N. M., Shulga A. M., Starukhin A. S. Resonance Raman spectra of deuterated metalloporphins. *J. Mol. Struct.*, 1978, vol. 45, pp. 267–305.

8. Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. *Chem. Phys. Lett.*, 1997, vol. 281, no. 1, pp. 151–156.

9. Gladkov L. L., Ksenofontova N. M., Solovyov K. N., Starukhin A. S., Shulga A. M., Gradyshko A. T. Vibrational spectra of chlorin and deuterated derivatives. *Zhurnal prikladnoy spektroskopii* [Journ. Appl. Spectr.], 1983, vol. 38, no. 4, pp. 598–606 (In Russian).

10. Weiss C. C., Kobayashi H., Gouterman M. Spectra of porphyrins. Part III. Self-consistent molecular orbital calculations of porphyrins and related ring systems. *J. Mol. Spectrosc.*, 1965, vol. 16, no. 2, pp. 416–450.

Информация об авторах

Гладков Лев Львович – доктор физико-математических наук, доцент, профессор кафедры физических и математических основ информатики. Белорусская государственная академия связи (220114, г. Минск, ул. Франциска Скорины, 8/2, Республика Беларусь). E-mail: llglad@tut.by

Гладкова Галина Александровна – кандидат технических наук, доцент, доцент кафедры высшей математики. Военная академия Республики Беларусь (220057, г. Минск, пр. Независимости, 220, Республика Беларусь). E-mail: llglad@tut.by

Information about the authors

Gladkov Lev L'vovich – DSc (Physics and Mathematics), Associate Professor, Professor, the Department of Physical and Mathematical Foundations of Informatics. Belarusian State Academy of Communications (8/2, Francysk Skaryna str., 220114, Minsk, Republic of Belarus). E-mail: llglad@tut.by

Gladkova Galina Aleksandrovna – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Higher Mathematics. Belarusian Military Academy (220, Nezavisimosti Ave., 220057, Minsk, Republic of Belarus). E-mail: llglad@tut.by

Поступила после доработки 26.12.2023