634.976

E devel !

министерство высшего образования ссер

БЕЛОРУССКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ ИМЕНИ С. М. КИРОВА

А. К. ЛОБАСЕНОК

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ДРЕВЕСИНЫ ОЛЬХИ ЧЕРНОЙ В СВЯЗИ С ТИПАМИ ЛЕСА

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата сельскохозяйственных наук

634.976

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ СССР

БЕЛОРУССКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ имени С. М. КИРОВА

А. К. ЛОБАСЕНОК

03-ap

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ДРЕВЕСИНЫ ОЛЬХИ ЧЕРНОЙ В СВЯЗИ С ТИПАМИ ЛЕСА

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата сельскохозяйственных наук

МИНСК-1955

РАБОТА ВЫПОЛНЕНА В БЕЛОРУССКОМ ЛЕСОТЕХНИЧЕСКОМ ИНСТИТУТЕ имени С. М. КИРОВА.

ВВЕДЕНИЕ

В СССР успешно осуществляется программа Коммунистической партии и Правительства по дальнейшему мощному подъёму всего народного хозяйства, неуклонному росту материального благосостояния и культуры советского народа. Большую роль при этом играет древесина, потребление которой из года в год увеличивается и расширяются сферы ее промышленного применения. Промышленность предъявляет все возрастающие требования не только в отношении количества, но и в отношении качества лесоматериалов. Следовательно, знание свойств древесины важно в целях рационального ее использования и выращивания древостоев необходимых качеств.

Научной основой изучения леса и лесных пород является учение о лесной типологии, созданное отечественными учеными Г. Ф. Морозовым, В. Н. Сукачевым, П. С. Погребняком и др. Влияние типов леса на строение и физико-механические свойства установлено исследованиями Л. М. Перелыгина по дубу, В. Е. Вихрова—по дубу, ясеню и липе, А. Б. Жукова, И. С. Мелехова, Б. Д. Жилкина, А. Н. Шатерниковой, А. И. Калнинь-

ша—по сосне, А. Л. Синькевича—по березе и др.

Данные о строении, физико-механических свойствах и пороках древесины, а также выходе деловых сортиментов в связи с условиями произрастания дают возможность судить о качестве древесины на корню и с учетом этого целесообразно определять ее назначение по типам леса. Закономерность изменения свойств древесины в зависимости от типов леса позволяют намечать лесохозяйственные мероприятия по формированию древостоев, дающих древесину высоких технических свойств.

Исследование древесины в связи с типами леса получило полное признание со стороны Междуведомственного Совещания, созванного в 1948 г. при Институте леса АН СССР по изучению строения и физико-механических свойств древесины.

Несмотря на большое распространение черноольховых насаждений в лесах европейской части СССР и в особенности в лесах Белорусской ССР и все возрастающее народнохозяйственное значение древесины ольхи черной, ее свойства изучены плохо. Работ же по исследованию древесины этой породы в зависимости от типов леса вовсе не имеется.

В связи с отмеченным в настоящей работе ставятся задачи: всесторонне изучить физико-механические свойства древесины ольхи черной в связи с типами леса и возрастом деревьев, установить различие в свойствах древесины деревьев порослевого и семенного происхождения, определить основные свойства древесины ложного ядра и выяснить эксплуатационные возможности этой породы (выход деловых сортиментов и проч.).

Работа выполнялась в течение 1951—1955 гг.

Содержание работы

Диссертация состоит из введения, пяти глав, списка использованной литературы из 208 наименований и приложений. Работа изложена на 291 странице машинописного текста и содержит 90 таблиц, 30 графиков и диаграмм, одну схему, 8 рисунков почвенных разрезов и 9 фотоснимков древостоев пробных площадей.

В вводной части изложены цели и задачи работы.

В главе I приведены основные данные об ольхе черной, свойствах ее древесины и применении в народном хозяйстве.

Глава II посвящена критическому обзору литературы, касающейся вопросов влияния условий произрастания на физико-механические свойства древесины и исследований свойств древесины ольхи черной.

В главе III дана характеристика условий произрастания и лесного фонда Узденского лесхоза и Негорельского учебноопытного лесхоза Минской области (объекты закладки пробных плошадей).

В главе IV описана методика закладки пробных площадей, выбора модельных деревьев, заготовки образцов, производства испытаний и статистической обработки экспериментальных данных.

В основной V главе, занимающей 65% объема текста, изложены итоги исследований по всем программным вопросам диссертации. В конце работы помещены выводы.

Методика работы

Пробные площади для исследования древесины ольхи черной были заложены в древостоях наиболее представленных в

БССР типов леса. По целевому назначению они распределились в соответствии с данными таблицы 1.

Таблица 1

№№ групп пробных площадей	Типы леса	Ne Ne 11po6- Heix fijour.	Класс воз-	Бонитет	Происхож- дение
1	Ольс крапивно-таволговый Ольс таволговый Ольс осоковый .	6 5 1	V—46 V—45 V—45	I III	Порослевое
П	Ольс крапивно-таволговый Ольс таволговый	2 3	VII-64 VII-65	I II	Порослевое
111	Ольс крапивно-таволговый	7	IV-38	I	Порослевое
IV	Ольс крапивно-таволговый Ольс крапивно-таволговый (на минеральной почве)	6a 8	V-46 V-45	I I	Семенное
V	Ольс таволговый	4	VI – 55	II	Порослевое

Такое распределение пробных площадей дало возможность охарактеризовать физико-механические свойства древесины в зависимости от:

а) типов леса—по пробным площадям №№ 6, 5 и 1, а также по пробным площадям (повторность) №№ 2 и 3;

б) возраста древостоев—по пробным площадям №№ 7, 6 и 2 и по пробным площадям (повторность) №№ 5 и 3;

в) происхождения (порослевое или семенное) — по пробным площадям №№ 6, 8 и 6а.

Помимо этого на пробной площади № 4 были подобраны модельные деревья с ложным ядром. Древесина этих модельных деревьев послужила для установления физико-механических свойств древесины ложного ядра.

Отбор модельных деревьев велся в соответствии с ОСТ НКЛеса 196. На каждой пробной площади вырубалось по 6 модельных деревьев I—III классов роста. Из модельных деревьев вырезались кряжи длиной в 1,25 м на высоте 1,3 м, на половине длины ствола до подкронной части и под кроной (ниже

кроны на 0,5 м). Всего было срублено 53 модельных дерева и из них заготовлено 159 кряжей.

Для определения влажности древесины в свежесрубленном состоянии одновременно с заготовкой кряжей вырезались кружки толщиной 3 см. Кружки брались у шейки корня, в начале каждого кряжа, под кроной и в области кроны. Из кружков выкалывались образцы по 15-летним периодам роста размером $2\times2\times3$ см и взвешивались в лесу на технических весах.

Чтобы проследить изменение влажности древесины в течение года (сезонные колебания), срубалось по два дерева в месяц на пробной площади № 6. Кружки отбирались на тех же высотах и также разделывались на образцы, как и в первом случае.

Модельные деревья подвергались условной раскряжевке с

целью установления выхода деловых сортиментов.

На каждой пробной площади делались почвенные разрезы глубиной до 2 м. Описание разрезов велось по генетическим горизонтам. Оказалось, что 8 пробных площадей расположены на торфяно-перегнойных почвах низинного типа болот и одна—на дерново-подзолистых почвах. Морфологическое описание и результаты химического анализа почв свидетельствуют о хороших условиях произрастания черноольховых насаждений. Менее производительный тип леса—ольс осоковый приурочен к пониженным местам.

Разметка и разделка кряжей на образцы для исследований и испытания древесины производились в соответствии с ГОСТ 6336-52. Всего для изучения было заготовлено более 10000 образцов. Экспериментальные данные обработаны методом математической статистики.

Для выяснения связи между объемным весом и пределом прочности при сжатии вдоль волокон вычислены коэффициенты корреляции и выведены уравнения зависимости.

Определялись следующие физико-механические свойства: число годовых слоев в 1 см, число сердцевинных повторений на 1 м² поверхности разреза, влажность древесины в свежесрубленном состоянии, изменения влажности древесины растущих деревьев в течение года, водопоглощение, разбухание—радиальное, тангентальное и объемное, коэффициент усушки—радиальной, тангентальной и объемной, объемный вес, пределы прочности при сжатии вдоль волокон, статическом изгибе, скалывании вдоль волокон в радиальном и тангентальном направлениях, условный предел прочности при смятии поперек волокон в радиальном и тангентальном направлениях, модуль

упругости при статическом изгибе, удельная работа при ударном изгибе, сопротивление раскалыванию в радиальной и тангентальной плоскостях и твердость статическая—торцевая, радиальная и тангентальная.

Все механические свойства определялись на 30-тонном прессе Амслера, за исключением удельной работы при ударном изгибе. Испытание на ударный изгиб проводилось на маятниковом копре марки M-30 с запасом энергии, равным 10 кгм.

Результаты исследования

1. Определения влажности древесины ольхи черной в свеже-срубленном состоянии и ее изменения в течение года позволили

прийти к следующим выводам:

а) с ухудшением условий произрастания (типов леса) влажность древесины увеличивается. Так, древесина из древостоев V класса возраста крапивно-таволгового типа леса содержит воды 91%, таволгового—94% и осокового—102%. Разница в показателях в большинстве случаев достоверна и между крайними типами леса составляет 11%.

Средняя абсолютная влажность древесины ольхи черной в свежесрубленном состоянии в феврале месяце равняется 99%;

б) установлено, что древесина ольхи черной из древостоев IV класса возраста содержит 112 % воды, V класса возраста—91 % и VII класса возраста—90 %. Таким образом, разница в содержании воды в древесине между IV и VII классами возраста составляет 22 % и является достоверной.

Высокая влажность в древесине IV класса возраста совпа-

дает с периодом максимального прироста;

в) по радиусу ствола влажность древесины изменяется, закономерно уменьшаясь от периферии к сердцевине, а по высоте ствола, увеличиваясь от основания к вершине с некоторыми отклонениями. Разница указанных изменений в первом случае составляет 35% и является достоверной, а во втором случае—13% и в большинстве случаев не достоверна.

Ольха черная, как имеющая разницу в содержании воды между периферической и центральной частями ствола, повидимому, может быть отнесена к спелодревесным породам, а не к заболонным, куда она относится по современным классификациям;

г) изменение влажности растущей древесины ольхи черной в зависимости от времени года характеризуется данными таблицы 2.

Изменение влажности сырорастущей древесины ольхи черной в зависимости от времени года

Показатели	Янв.	Февр.	Март	Ап- рель	Июнь	Aвг.	Сент.	Окт.
Влажность в 0/0	98	91	84	85	74	82	88	92

Из данных таблицы 2 видно, что влажность сырорастущей древесины в течение года не остается постоянной. Она закономерно уменьшается с января по июнь, а с июня — снова увеличивается. Разница в показателях влажности древесины между названными месяцами составляет 24%.

Изменение влажности древесины растущих деревьев зависит от характера поступления воды в дерево из почвы, от интенсивности транспирации воды кроной в различное время года и

других факторов.

2. В древесине ольхи черной встречаются сердцевинные повторения. Сердцевинные повторения состоят из паренхимных клеток, имеющих сравнительно небольшую прочность, и при больщом их развитии они могут ослаблять прочность древесины. Наши исследования показали:

а) сердцевинные повторения на продольных разрезах заметны в виде черточек, прожилок, пятнышек. Эти образования имеют более правильную форму на радиальных плоскостях и менее правильную (часто разветвляющуюся) на тангентальных. Плирина их не превышает 1,5 мм, а длина 40 мм;

б) число сердцевинных повторений на 1 м² радиальной плос-

кости доходит до 2800, а на тангентальной — до 1700;

в) сердцевинных повторений встречается больше в древесине древостоев лучших типов леса. Исследования А. Л. Синькевича по березе показали обратное (худших);

г) строгой закономерности изменения количества сердце-

винных повторений по раднусу ствола не установлено.

Сердцевинные повторения в древесине ольхи черной согласно нашим исследованням не развиваются до максимальных размеров, допускаемых ГОСТом 2647-51 в аккумуляторном шпоне. В аккумуляторном шпоне ГОСТ допускает сердцевинные повторения шириной до 3 мм и без ограничения длины и количества.

3. Знание размеров водопоглощения и процессов водопоглощения древесины имеет практическое значение (сплав, про-

питка). Исследования показали, что существенной разницы водопоглощения древесины ольхи черной от типов леса не наблюдается. Древесина из крапивно-таволгового типа леса поглотила воды практически одинаковое количество $(149\,\%)$ с древесиной из насаждений таволгового типа леса $(152\,\%)$.

Среднее значение водопоглощения составляет 150%.

Существенно отметить, что несмотря на значительную продолжительность выдерживания образцов в воде (90 дней), процесс водопоглощения, хотя и незначительно, но продолжался. Опускание образцов на дно сосуда началось с 25 дня опытов, а к концу опытов потонуло до 90% образцов.

4. Результаты определения разбухания показали, что разбухание древесины из древостоев крапивно-таволгового типа леса составляет: радиальное—3,86%, тангентальное—7,31% и объемное—11,96%, а разбухание древесины из таволгового типа леса соответственно равно—4,15%, 7,51% и 12,83%. Приведенные данные свидетельствуют о том, что разбухание увеличивается с ухудшением условий произрастания (выше объемный вес).

Соотношения между средними значениями радиального, тангентального и объемного разбухания составляют 1:1,8:3.

Разница в показателях разбухания в зависимости от типов леса, возраста древостоев, а также по высоте и радиусу ствола не является достоверной.

5. Результаты определений основных физико-механических свойств древесины ольхи черной в зависимости от типов леса сведены в таблицу 3. Из данных указанной таблицы видно, что, как правило, физико-механические свойства древесины этой породы с ухудшением условий произрастания (типов леса) повышаются.

Из исследованных нами условий произрастания более высокими физико-механическими свойствами обладает древесина ольхи черной из типа леса ольс осокового. Второе место занимает древесина из типа леса ольс таволгового и третье—ольс крапивно-таволгового.

Разница в показателях свойств древесины из крайних типов леса в среднем составляет 8—10% и является достоверной для числа годовых слоев в 1 см, объемного веса, коэффициентов усушки, пределов прочности при сжатии вдоль волокон и скалывании в тангентальном направлении, смятия поперек волокон, удельной работы при ударном изгибе, твердости—торцевой, радиальной и тангентальной и сопротивления раскалыванию в тангентальной плоскости.

Физико-механические свойства древесины ольхи черной

				V	класс	возрас
Показатели	Т	ьс краг аволго Пробна ошадь	вый. Ая	Ольс таволговый. Пробная площадь № 5		
-	n	M	± m	n	M	± m
Число годовых слоев в 1 см .	120	5,8	0,092	87	6,2	0,107
Объемный вес в г _. см ³	144	0,520	0,0033	98	0,539 104 ⁰ ₀	0,0042
Коэффициент усушки в ⁰ , ₀ : радиальной тангентальной объемной	144 144 144	0,307	0,0026 0,0028 0,0041	98 98 98	0,191 0,301 0,518	0,0028 0.0' 35 0,0048
Предел прочности в кг/см² при: • сжатии вдоль волокон	144	384	3,71	98	402 105%	⁸ 4,63
статическом изгибе	144	672 100° 0	10,73	83	669 100° ₀	10,55
скалыванин: раднальном . тангентальном	88 115		0,54 0,76	51 76		1,00 1,17
Местное смятие поперек волокон в кг/см²: радиальном тангентальном	45 35		1,95 1,08	36 29		1,69 1,49
Модуль упругости при статич. изгибе в_тыс. кг/см²	114	81	1,39	83	84	1,35
Удельная работа при ударном изгибе з кгм/см ³	140	$0,220$ $100^{\circ} _{0}$	0,0044	81	0.275 $1250 _{0}$	0,0072
Сопротивление раскалыванию в кг/см: радиальной	39 63	16.5 17,3	0,335 0,378	16 32	14,5 17,2	0.518 0,428
Гвердость статич. кг/см²: торцевая	76	403 1000 ₀	5,90	44	410 102 ³ ₀	6,71
радиальная .	74	259 1000 ₀	3,88	44	263 1020 ₀	6,14
тангентальная	73	271	4,95	41	274 1010 ₀	5,50

по типам леса (при 150/в влажности)

ra				VI	I класс	воз	раста		Ha-	CT G	FOCT enpon
Ольс осоковый. Пробная площадь № 1			Т	Ольс крапивно- таволговый. Пробная площадь № 2		Ольс таволговый. Пробная площадь № 3			Среднее по н стоящ, ис- следованиям	Олька по ГОСТ 4631— 49 европ. части СССР	а по 49 ССС
n	M	± ın	n	M	±m	11	M	±m	555	Ольха 4631— части	Сосн 4631- части
116	6,4	0,082	112	6,3	0,051	110	6,8	0,165	6,3	_	6,4
122	0,540 1040 ₀	0,0030	147	0,519 100° ₀	0,0033	123	0,532 1030;0	0,0042	0,53	0,52	0,53
122 122 122	0,208 0,321 0,559	0,0028 0,0033 0,0051	147 147 147	0,185 0,293 0,500	0,0023 0,0026 0,0041	123	0 206 0,306 0,532	0,0039 0,0038 0,0054	0,30	_	0,18 0,33 0,53
122	416 1080 ₀	3,75	147	367 100%	3,60	123	382 1040] ₀	4 ,0 8	385	368	439
100	669 1000 ₀	8,67	112	626 1000 ₀	7,0 9	102	689 110 ⁰ / ₀	10,44	662	692	793
82 121		0,93 0,79	89 1 2 8	80 92	0.61 0,83	69 102	83 92	0,92 0,84	82 96		69 73
47 34	87 69	1,32 1,04	47 32	85 51	1,35 0,65	39 29	88 54	1,69 0,97	85 59	_	
1 0 0	77	0,88	112	75	0,99	102	80	1,33	79	66	145
105	0,242	0,0060	111	$\frac{0,225}{100^{0} _{0}}$	0,0490	106	0,237 1050 ₀	0 ,0057	0,24		0,22
55 49	14,1 17,1	0.167 0,211	67 67	13,3 16,5	0,136 0,232	52 54	13,0 16,3	0,220 0,269	14,0 16,9		11,4 11,2
65	435 108 ⁰ ₀	4,81	59	431 100° ₀	5.25	71	455 106) ₀	5,58	423	338	
67	292 1139 ₀	4,43	57	$\frac{267}{100^{0} _{0}}$	4,15	67	292 1090 ₀	5,63	272	245	199
66	310 1140 0	5,45	61	278 1000 o	4,36	66	306 110 ⁹ / ₀	5.67	287	245	220

Древесина из типа леса ольс таволгового существенно отличается (выше) от древесины из типа леса ольс крапивно-таволгового по таким свойствам, как число годовых слоев в 1 см, объемный вес, сжатие вдоль волокон, радиальное скалывание, удельная работа при ударном изгибе.

Древесина из осокового и таволгового типов леса по своим физико-механическим свойствам имеет менее существенное различие, чем древесина крапивно-таволгового и таволгового типов леса

Наши данные в отношении повышения физико-механических свойств древесины с ухудшением условий произрастания (типов леса) подтверждают выводы В. Е. Вихрова, установившего, что древесина липы из типа леса липового дубняка по сравнению с древесиной из типа леса ясеневого дубняка (лучший тип) имеет повышенные показатели свойств. Однако указанная закономерность не согласуется с изменениями качества древесины березы в зависимости от условий произрастания. Так, А. Л. Синькевичем было установлено, что свойства древесины березы с ухудшением условий произрастания, как правило, понижаются. Очевидно не все рассеяннососудистые породы следуют одному и тому же правилу в изменениях свойств древесины в зависимости от изменений условий произрастания.

6. С улучшением типов леса ширина годовых слоев увеличивается. Число годовых слоев в 1 см выше в древесине из типа леса ольс таволгового на 7% и осокового—на 10%, чем в древесине из типа леса ольс крапивно-таволгового.

Как показывают результаты настоящих исследований, увеличение числа годовых слоев в 1 см сопровождается увеличением объемного веса и механических свойств, но эта зависимость наблюдается только в пределах одинаковых условий произрастания. Наряду с этим подмечено, что при увеличении числа годовых слоев в 1 см выше 8 объемный вес и предел прочности при сжатии вдоль волокон почти не возрастают.

7. Коэффициент усушки древесины ольхи черной с улучшением условий произрастания уменьшается. Так, коэффициент усушки древесины из типа леса ольс крапивно-таволгового в радиальном направлении составляет 0,196% и в тангентальном 0,307%, а в осоковом типе леса соответственно—0,208% и 0,321%.

Соотношение между средними коэффициентами радиальной, тангентальной и объемной усушки равняется 1:1,55:2,68.

8. Связь предела прочности при сжатии вдоль волокон с объемным весом по типам леса характеризуется уравнениями, приведенными в таблице 4.

Таблица 4

Зависимость предела прочности при сжатии вдоль волокон от объемного веса по типам леса

№ № проб- ных площадей	Класс возраста	Типы леса	Коэф. кор- реляц. со средней ошибкой	Уравнение зависимостн	Средняя ошибка уравнения
		Ольс крапивно-			
6	V	таволговый	0,72 0,04	$\sigma^{ii}_{iic(15)} = 803\gamma_{15} - 33$	±21
5	V	Ольс таволговый	0,65 - 0,06	$ \begin{array}{ccc} \sigma^{11} & & = 803\gamma_{15} - 33 \\ \sigma^{2} & & = 741\gamma_{15} + 3 \\ \sigma^{3} & & = 678\gamma_{15} + 50 \end{array} $	± 35
. 1	V	Ольс осоковый	0.55 - 0.06	$\sigma^{a}_{\pi c(15)} = 678\gamma_{15} + 50$	± 29
- 7	IV	Ольс крапивно- таволговый			
2	VII	Ольс крапивно-	0,01 = 0,00	$ \frac{\sigma^{a}}{\sigma^{a}} \frac{\pi c(15)}{\pi c(15)} = \frac{633\gamma_{15} + 44}{775\gamma_{15} - 35} $	+ 32
		таволговый	$0,71 \pm 0.04$	$\pi c(15) = 775 \gamma_{15} - 55$	± 22 j
3	VII	Ольс таволговый	0.70 ± 0.05	$\mathfrak{s}^{\mathbf{a}}_{\text{nc}(15)} = 683\gamma_{15} + 20$	±23

Как показывают коэффициенты корреляции с их ошибками, вычисленные для каждой пробной площади, между объемным весом и пределом прочности при сжатии вдоль волокон существует более тесная зависимость в лучших типах леса. В худшем осоковом типе леса и крапивно-таволговом типе леса IV класса возраста эта зависимость характеризуется меньшими коэффициентами корреляции.

9. Физико-механические свойства древесины ольхи черной закономерно повышаются от сердцевины к периферии ствола. Однако изменение свойств в указанном направлении в пределах одного и того же типа леса происходит неодинаково. Между центральной частью ствола и периферической разница в показателях объемного веса древесины из крапивно-таволгового типа леса составляет 6%, а предел прочности при сжатии вдоль волокон—12%. Соответственно в таволговом типе леса указанная разница доходит до 19 и 24%. Приведенные данные показывают, что физико-механические свойства более сильно снижаются от периферии к сердцевине в древесине из таволгового типа леса по сравнению с крапивно-таволговым.

Л. М. Перелыгин группу рассеяннососудистых пород делит на две подгруппы. В первую подгруппу он относит породы, фи-

зико-механические свойства древесины которых возрастают от периферии к сердцевине (бук, граб), а во вторую подгруппу относятся такие породы (береза, осина, липа), физико-механические свойства древесины которых возрастают от сердцевины к периферии. Следовательно, ольха черная должна быть отнесена во вторую подгруппу пород.

Физико-механические свойства древесины ольхи черной по-

вышаются от комля к вершине.

Разница в показателях свойств древесины между взятыми нами периодами роста по радиусу ствола в большинстве случаев является достоверной, а по высоте ствола достоверность разницы наблюдается лишь в отдельных случаях.

10. Несколько повышенными коэффициентами качества обладает древесина таволгового и осокового типов леса по сравнению с древесиной крапивно-таволгового. Средние коэффициенты качества древесины ольхи черной характеризуются следующими данными: при сжатии вдоль волокой—733, статическом изгибе 1258, скалывании в радиальном направлении 157 и в тангентальном—186, удельной работе при ударном изгибе в тангентальном направлении 0,46 и торцевой твердости 798. Следовательно, по классификациям Л. М. Перелыгина, ольху черную можно отнести к породам со средними коэффициентами качества, а по прочности она занимает среднее место между породами с невысокой прочностью и прочными.

11. Из литературных источников известно, что показатели предела прочности при сжатии вдоль волокон и торцевой твердости довольно близки друг к другу по величине и что, следовательно, зная показатель одного из этих свойств, можно примерно судить о другом. Из результатов наших исследований видно, что показатели торцевой твердости выше показателей предела прочности при сжатии вдоль волокон всего лишь на 2—5%. Таким образом, зная один из указанных показателей, ориентировочно можно судить о другом показателе древесины

ольхи черной, не производя исследований.

12. Данные наших исследований показывают, что основные свойства древесины ольхи черной повышаются от IV класса возраста к V, а от V к VII понижаются, но влияние возраста на отдельные свойства проявляются в неодинаковой мере.

Так, объемный вес древесины из древостоев IV класса возраста (ольс крапивно-таволговый) составляет 0,507 г/см 3 , предел прочности при сжатии вдоль волокон—365 кг/см 2 и предел прочности при статическом изгибе—646 кг/см 2 , а значения этих же свойств древесины из древостоев V класса возраста со-

ответственно равняются—0,520 г/см³, 384 кг/см² и 672 кг/см² и в VII классе возраста—0,519 г/см³, 367 кг/см² и 626 кг/см². Разница в приведенных показателях является достоверной, за исключением показателей объемного веса.

Сопротивление скалыванию в радиальном направлении древесины ольхи черной с возрастом древостоев понижается незначительно, а твердость несколько повышается (без достоверной разницы).

М. К. Быков установил, что сопротивление скалыванию древесины сосны мало зависит от возраста. К такому же заключению пришел и А. Л. Синькевич по березе.

Наши исследования показывают, что разница в возрасте даже на 1 класс сказывается на физико-механических свойствах древесины ольхи черной.

13. Положение дерева в насаждении оказывает влияние на физико-механические свойства древесины. Более высокими физико-механическими свойствами обладает древесина ольхи черной II класса роста, а далее в порядке убывания—III и I классов роста. Так, объемный вес во II классе роста выше, чем в III на 4% и во II выше, чем в I—на 5%. Соответственно предел прочности при сжатии вдоль волокоп выше на 5% и 10%, предел прочности при статическом изгибе—на 7% и 9%, торцевая твердость—на 7% и 9%, удельная работа при ударном изгибе в тангентальном направлении—на 18% и 9%.

Приведенные данные показывают, что разница в физикомеханических свойствах древесины ольхи черной по классам роста несколько превышает разницу в свойствах древесины из древостоев крайних типов леса (ольс крапивно-таволговый и ольс осоковый).

14. Физико-механические свойства древесины ольхи черной деревьев семенного происхождения значительно выше свойств древесины деревьев порослевого происхождения из одинаковых условий произрастания, что подтверждается данными таблицы 5.

Данные таблицы 5 показывают, что объемный вес древесины деревьев семенного происхождения выше объемного веса древесины из деревьев порослевого происхождения (торфяные почвы)—на 4%, предел прочности при сжатии вдоль волокон на 12%, предел прочности при статическом изгибе на 18% и удельная работа при ударном изгибе на 8%. В то же время из данных указанной таблицы видно, что древесина деревьев семенного происхождения, выращенная на минеральных поч-

вах, обладает также высокими показателями физико-механических свойств.

Таблица 5 Физико-механические свойства древесины ольхи черной семенного и порослевого происхождения

		Семенного про	исхождения	происхожд.	
Показатели	Едипица	на торф. почве. Пр. площадь № 6	на миненаль ной почве. Пр. плонц. № 8		
Число годовых	14	0.0	5.5 offe/	5.0 00 tl	
слоев в 1 см	Количество		$5.5 - 87^{\circ}/_{\circ}$	5,8-92 %	
Объемный вес Коэффициент осушки:	L/CM3	0,54-100 0/0	0,55-102 0/0	0,52-96 %	
радиальной	0/0	0,20	0.20	0,20	
гангентальной	0/0	0,31	0.31	0,31	
Сжатие вдоль	, ,	.,,		, , , , , , , , , , , , , , , , , , , ,	
волокон	кг/см²	$437 - 100^{-9}$	$418 - 96^{-0/0}$	384 - 880/0	
Статический изгиб в тангентальном					
направлении Удельная работа		813-100 %	722-90 0/0	672 - 82 º/0	
при ударном изгибе Твердость торце-	кгм/см3	0,24-100 %	$0.25 - 104^{\circ}/_{0}$	0,22-920/0	
вая	Kr/cm ²	384-100 0/0	417-1090/0	403-105%	

15. Исследования свойств древесины ложного ядра ольхи черной (пробная площадь № 4) показали, что древесина ложного ядра по большинству свойств не уступает нормальной древесине. Так, например, предел прочности при сжатии вдоль волокон древесины ложного ядра ниже нормальной на 1—2%, предел прочности при статическом изгибе на 9%, ударный изгиб—на 19%. Разница этих изменений находится в пределах изменений многих механических свойств древесины этой породы по радиусу ствола. Приведенные данные свидетельствуют о том, что древесина ложного ядра сльхи черной может более широко применяться в промышленности и строительстве, чем это предусмотрено ГОСТами и прежде всего в тех случаях, где древесина не подвергается ударным нагрузкам. Это дает возможность иметь дополнительные ресурсы сырья.

Чтобы судить о том, как ложное ядро в древесине ольхи черной распространяется по диаметру и высоте ствола, были пронзведены замеры 24 деревьев, имевших ложное ядро без загни-

вания и с загниванием от гриба Fomes igniarius f. alni. Результаты измерений показали, что ложное ядро от диаметра занимает у шейки корня 23%, на высоте ствола 1,3 м—36%, на 1/2 высоты ствола до подкронной части—44% и под кроной—27%. Ложное ядро иногда обнаруживалось в стволе и в пределах кроны.

16. Лесоэксплуатационные возможности древесных пород определяются физико-механическими свойствами, а также фау-

тами древесины.

Выше было указано, что физико-механические свойства древесины ольхи черной в лучших типах леса не являются более высокими. Но зато в лучших типах меньше встречается фаутных деревьев. Ствол здесь лучше очищается от сучьев и отличается большей полнодревесностью и меньшей кривизной. В типе леса ольс осоковом процент фаутных деревьев оказался выше, чем в крапивно-таволговом в 3 раза, а зона бессучковой части ствола меньше на 2—3 м. Высота прикрепления первого мертвого и первого живого сучка в древостоях типа леса ольс осокового составляет 8,1 м и 9 м, а в типе леса ольс крапивно-таволгового—11,1 и 12,6 м.

Выход деловых сортиментов по данным условной раскряжевки модельных деревьев в осоковом типе леса оказался равным 62%, в таволговом—71% и в крапивно-таволговом 78%. Средний выход деловых сортиментов по нашим исследованиям составил 71%, по табличным данным (таблицы Ф. П. Моисеенко) он равен 62% и по данным Министерства лесной и бумажной промышленности БССР—55%.

Таким образом, определяющими более высокие эксплуатационные возможности ольхи черной оказались крапивно-таволговый и таволговый типы леса. Тип леса ольс осоковый по прочности древесины занимает высокое место, но уступает в эксплуатационных возможностях типам леса ольс крапивно-таволго-

вому и ольс таволговому.

- ЗАКЛЮЧЕНИЕ

1. Древесина ольхи черной, произрастающая в БССР, отличается высокими физико-механическими свойствами. По механическим свойствам древесина ольхи черной почти не уступает древесине таких распространенных в строительстве и деревообработке пород, как сосна и ель. Следовательно, древесина этой породы может более широко применяться не только в деревообработке, но и в строительстве.

2. Все основные физико-механические свойства древесины

ольхи черной являются более высокими не в лучших, а в средних по производительности типах леса. Это важно учитывать при выращивании и отборе высококачественной древесины.

3. Физико-механические свойства древесины ольхи черной, как правило, повышаются от IV к V классу возраста, а от V к VII—понижаются. Понижение свойств от V класса возраста к VII, а также большое развитие гнили в древостоях старших классов возраста должны учитываться при обосновании возраста рубки черноольховых насаждений. С указанной точки зрения, повидимому, более целесообразным возрастом рубки следует считать V—VI (45—55 лет) класс возраста.

4. Физико-механические свойства понижаются от периферии к сердцевине и повышаются от основания к вершине. Эту закономерность необходимо учитывать при разделке хлыстов на сортименты и раскрое кряжей на детали с целью рационального использования всех частей ствола, в том числе и подкронной части.

5. Физико-механические свойства древесины ольхи черной деревьев II класса роста выше физико-механических свойств

древесины деревьев III и I классов роста.

6. Физико-механические свойства древесины ольхи черной деревьев семенного происхождения выше свойств древесины деревьев порослевого происхождения из одинаковых условий произрастания. Следовательно, лесохозяйственные мероприятия должны быть направлены на выращивание и формировавание древостоев семенного происхождения (искусственное и естественное), как менее подвергающихся поражению грибами и дающих древесину более высоких физико-механических свойств.

7. Физико-механические свойства древесины ложного ядра без загнивания мало уступают физико-механическим свойствам нормальной древесины и потому древесина ложного ядра должна более широко применяться в производстве. Ограничения, предусмотренные ГОСТами в отношении применения древесины ложного ядра ольхи черной, следует пересмотреть.

8. Эксплуатационные возможности ольхи черной увеличиваются с улучшением условий произрастания (больший выход деловых сортиментов, меньшая поражаемость грибами, большая зона бессучковой части ствола и проч.). Определение технических свойств древесины ольхи черной по типом леса облегчает возможность оценки ее качества на корню и установление сфер ее применения в различных отраслях народного хозяйства.

nm. C.M. KHPOBA