Р. Н. Ласовский, ассистент

ДИФФУЗИОННЫЕ ХАРАКТЕРИСТИКИ НИЗКОРАЗМЕРНЫХ СИСТЕМ

The model for obtaining the particle distribution profile at battery discharging is described. Diffusion coefficient and distribution functions are investigated.

Введение

В качестве систем, способных аккумулировать электрическую энергию, широко используются интеркаляционные соединения (например, литийсодержащие оксиды металлов) [1–4]. Изучение процесса разряда интеркаляционных систем представляет интерес ввиду возможности использования полученных результатов для усовершенствования применяемых устройств: повышения емкости, увеличения количества циклов перезарядки без ухудшения характеристик и т. п. Одним из наиболее важных параметров для понимания физико-химических основ процесса является распределение частиц интеркалянта по глубине системы.

В работе [5] рассматривалось моделирование разряда интеркаляционного источника тока в рамках решеточной модели. В процессе моделирования по описанному в этой работе алгоритму решетка заполнялась частицами интеркалянта до высокой концентрации ($c \approx 0.92$), соответствующей равновесному значению конденсированной фазы. В результате моделирование требовало больших затрат машинного времени.

В данной работе предлагается модифицироканная модель, позволяющая получить профиль плотности (распределение концентрации частиц по глубине системы), практически совпадающий с профилем, полученным в работе [5]. Преимущество предлагаемой модели состоит в том, что средняя концентрация на решетке оказывается на порядок ниже ($c = 0,05 \div 0,1$), это приводит к значительному сокращению времени моделирования, и возможностью изучить явление более детально.

Алгоритм моделирования

Рассматривается прямоугольная решеточная система с притяжением ближайших соседей, состоящая из трех частей: буфер с «высокой» концентрацией, буфер с «низкой» концентрацией и исследуемая ячейка (рис. 1).

Начальное заполнение решетки производилось случайным образом. Концентрация частиц в буфере с «высокой» концентрацией была на 1% выше, чем в исследуемой ячейке, а в буфере с «низкой» концентрацией – на 1% ниже. В дальнейшем концентрации в буферах с «высокой» и «низкой» концентрациями поддерживалась не ниже или не выше начальной, соответственно. Для этого частицы добавлялись в буфер или изымались из него по мере необходимости.

Кроме того, взаимодействие частиц в буфере с «высокой» концентрацией составляло 10% от взаимодействия в исследуемой ячейке. Это позволяло сформировать в исследуемой ячейке слой, концентрация в котором была близка к равновесной.

Для уменьшения влияния граничных эффектов, обусловленных малым размером моделируемой системы, на верхнюю и нижнюю стороны рассматриваемой решетки наложены периодические граничные условия. Помимо этого, вероятность найти соседа слева для буфера с «высокой» концентрацией и справа для буфера с «низкой» концентрацией принимались равными концентрациям частиц в этих областях.

Рис. 1. Исследуемая модель

Моделирование состояло в том, что случайно выбирались: 1) узел, пока не находился занятый частицей; 2) направление прыжка частицы в один из четырех ближайших узлов. Если этот соседний узел был не занят, подсчитывалась вероятность перехода частицы из занятого узла в свободный:

$$P = \exp(-\beta J_c z), \qquad (1)$$

где $\beta = 1/k_{\rm B}T$ — обратная температура; $k_{\rm B}$ — постоянная Больцмана; $J_c = J/k_{\rm B}T_c$; J — параметр взаимодействия между ближайшими соседями; T_c — критическая температура; z — число ближайших соседей выбранного узла. Эта вероятность сопоставлялась со случайной величиной X, равномерно распределенной на интервале [0,1], и в случае $P \ge X$ перескок частицы принимался, а в случае P < X — отвергался.

Повторение процедуры перескока количество раз, равное числу частиц в системе, формирует один Монте-Карло шаг (МКШ). Усреднение результатов моделирования производилось по ансамблю, состоящему из 1000 систем с 200 000 МКШ.

Результаты моделирования

В результате моделирования был получен профиль распределения частиц для исследуемой системы шириной 16 ячеек и глубиной 256, показанный на рис. 2. В отличие от моделирования разряда источника тока в полученном профиле можно выделить лишь две области: разреженную и «переходную». Однако этого достаточно, т. к. изучение конденсированной фазы не вызывает интереса, поскольку профиль распределения частиц в ней представляет собой горизонтальную прямую [5].

Коэффициент диффузии в разреженной области определялся законом Фика:

$$J = -D_{ch} \nabla c , \qquad (2)$$

где J – поток частиц; D_{ch} – химический коэффициент диффузии; ∇c – градиент концентрации.

Поток частиц определялся как количество частиц, перешедших из исследуемой ячейки в буфер с «низкой» концентрацией в единицу времени (за один Монте-Карло шаг), отнесенный к ширине системы.

Для вычисления градиента концентрации в разреженной области распределение плотности аппроксимировалось экспоненциальной функцией (рис. 3), после чего бралась производная концентрации по пространственной координате.

Распределение плотности с хорошей степенью точности соответствует зависимости

$$c = 0,00\ 934 + 0,06\ 189\exp\left(-\frac{x}{133,5807}\right),$$
 (3)

где x – пространственная координата (в нашем случае номер слоя).

Рис. 3. Распределение плотности частиц в разреженной области (светлыми кружками показана экспоненциальная аппроксимация)

· Рис. 4. Зависимость химического коэффициента диффузии от концентрации. Сплошная линия – коэффициент, вычисленный по формуле (2), кружочки – по формуле Жданова,

На рис. 4 проведено сравнение полученного коэффициента диффузии с коэффициентом, вычисленным по формуле Жданова:

$$D_{ch} = D_0 \chi \frac{\exp(\beta \mu)}{c} F(0,0), \qquad (4)$$

где D₀ – коэффициент диффузии Ленгмюровского (невзаимодействующего) газа; µ - химический потенциал; $\chi = \beta(\partial \mu / \partial \ln c)$ – термодинамический фактор; с – решеточная концентрация; F(0,0) – вероятность двум соседним узлам быть вакантными.

Результаты, полученные для химического коэффициента диффузии по формуле (2), находятся в хорошем согласии с теоретическими данными (формула Жданова).

Рис. 6. Зависимость функций распределения от концентрации. Кружками показаны результаты ССДП

Кроме того, стоит отметить, что поведение химического коэффициента диффузии практически не зависит от размера моделируемой системы (рис. 5). Это говорит о стабильности профиля распределения частиц в разреженной области.

Представляет интерес моделирование функций распределения F(1,1) и F(0,1), определяющих вероятность найти занятыми два ближайщих узла и один занятым, а другой свободным, соответственно. Результаты моделирования были сопоставлены с теоретическими данными (рис. 6), полученными с помощью самосогласованного диаграммного приближения (ССДП) [6–7].

Из рис. 6 видно, различия между результатами невелики и увеличиваются с ростом концентрации. Незначительное различие можно объяснить тем, что ССДП не учитывает неравновесности системы, рассматриваемой при моделировании.

Заключение

Анализ результатов моделирования описанной в данной работе системы показал, что она вполне пригодна для изучения профиля распределения частиц интеркалянта, получаемого при моделировании разряда батареи.

Кроме того, диффузионные характеристики разреженной области близки к теоретическим равновесным характеристикам.

Литература

1. Lee Jong-Won and Pyun Su-II. // Electrochimica Acta. - 2005. - V. 50, N 9. - P. 1777.

2. Han B. C., Van der Ven A., Morgan D. and Ceder G. // Electrochimica Acta. -2004. - V. 49, N 26. -P. 4691.

3. Vlachos D. G. et al. // Phys. Rev. Letters. – 2000. – V. 85, N 18. – P. 3898–3901.

4. Lam R. et al. // Journ. of Chem. Phys. --2001. - V. 115, N 24. - P. 11 278-11 288.

5. Ласовский Р. Н. Моделирование по методу Монте-Карло разряда источника тока // Труды БГТУ. Сер. физ.-мат. наук и информатики. – 2005. – Вып. XIII. – С. 49–52.

6. Bokun G. S., Groda Ya. G., Belov V. V. // Euro. Phys. Journ. B. - 2000: - V. 15, N 2. -P. 297.

7. Грода Я. Г., Ласовский Р. Н. Диффузия газа в двухуровневой решеточной системе // Труды БГТУ. Сер. физ.-мат. наук и информатики. – 2005. – Вып. – XIII. – С. 44–48.

8. New trends in intercalation compounds for energy storage / Julien C., Pereira-Ramos J. P. and Momchilov A. – eds. – London: Kluwer, 2002.