УДК 517.958

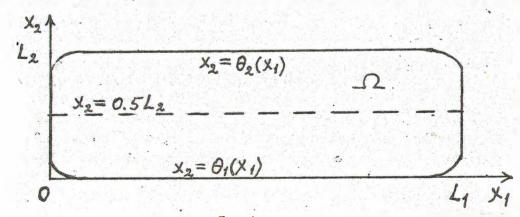
С. С. Каянович, ст. преподаватель

ИССЛЕДОВАНИЕ РАЗРЕШИМОСТИ УРАВНЕНИЙ ГИДРОДИНАМИКИ В ОБЛАСТЯХ СПЕЦИАЛЬНОГО ВИДА

The existence and uniqueness of the solution of the Navier - Stokes type equations satisfying all the hydrodynamic equations were proved for some areas.

По вопросу о том, что дают уравнения Навье-Стокса для описания движений реальных жидкостей, можно спорить до сих пор. Остаются пока белые пятна в вопросах разрешимости этих уравнений, сохраняются парадоксы вязкой жидкости [1]. В связи с таким положением появляются новые подходы: решению этих уравнений [2].

В данной работе изучается видоизменённая система уравнений с соответствующими ей краевыми условиями. Выясняется, какое отношение имеет решение этой системы, если оно существует, к решению системы Навье-Стокса. Формулируются предположения, при которых рассматриваемая задача имеет единственное решение. Выполнение предположений связано с постановкой граничных условий. Максимальные области, в которых соответствующие условия могут быть поставлены, навываются областями специального вида. В данной статье считаем, что сама рассматриваемая область является областью специального вида. Исследование проводится в двумерной областы простой геометрии, обладающей осью симметрии к. 2 - 0.5L. (рис. 1).



PMC. 1

В классической постановке задача имеет вид

$$u_{it} - y u_{iX_k X_k} + u_k u_{iX_k} = -P_{X_i} ; u_{kX_k} = 0;$$

$$u_i \Big|_{S_T} = \Psi_i ; u_i \Big|_{t=0} = \alpha_i ,$$
(3)

где S - граница области Ω , S - S x [J, T] , i=1,2, по k производится суммирование от 1 до 2. Решение вадачи (1) - (3) ищется в области Ω_{-} = Ω × (0, T).

Пусть область Ω (рис. 1) ограничена линиями: $x_2 = \theta_1(x_1)$, $x_2 = \theta_2(x_1)$, $x_1 = 0$, $x_1 = L_1$, причём $\theta_1(x_1) < \theta_2(x_1)$.

Будем рассматривать задачу

$$u_{tt} - y u_{tx_k x_k} + u_k u_{tx_k} = -P_{x_t} , u_{2x_2 x_2} = -u_{tx_1 x_2}$$
 (4), (5)

$$P_{x_m x_m} = -f_{m x_m}$$
; $u_1|_{s_T} = \psi_1$; $u_1|_{t=0} = \alpha_1$; (6), (7), (8)

$$|u_2|_{S_T'} = 9$$
; $|u_2|_{S_T^2} = -9$; $\frac{\partial P}{\partial N}|_{S_T} = -f_m \cos \lambda_m^{(9)}$, (10)

THE
$$f_i = u_k u_{iX_k}$$
, $S_T^i = \theta_i \times 0$, TI, $q = q(x_i, t)$, $\frac{\partial P}{\partial N} = P_{X_m} \cos d_m$

- производная но направлению вектора \overline{N} внешней нормали к S, \varkappa_i - угол между вектором \overline{N} и осыр \varkappa_i , по k, m производится суммирование от 1 до 2.

Будем говорить, что функция w(x,t), определённая на

$$w(x_1, L_2 - x_2, t) = w(x_1, x_2, t) (w(x_1, L_2 - x_2, t) = -w(x_1, x_2, t)).$$

Лемма. Если решение u_1 , u_2 , р задачи (4) - (10) существует, принадлежит классу достаточно гладких в Ω_T функции, функции u_1 , р обладают свойством чётности, а функция u_2 - свойством нечётности по x_2 выполняется равенство

$$\int_{\theta_1}^{\theta_2} u_{1X_1} dX_2 = 29 , \qquad (11)$$

то это решение удовлетворяет всем уравнениям системы (1), (2). Будем предполагать, что

где $\ell > 0$ - нецелое число. Обозначения, связанные с пространствами Гёльдера (см. (12)), соответствуют [3]. Сделаем замену $u = v_1 + v_2$, где — какая-либо функция из пространства $\ell + s_1 = \frac{\ell + s_2}{2} = \frac{1}{2} \left(\frac{1}{2} - v_1 \right)$, обладающая свойством чётности по v_2 и равная v_1 на v_2 на v_3 Тогда равенства (4), (7) примут вид

$$\begin{aligned} & V_{tt} - y \, V_{1X_{k}X_{k}} + u_{k}V_{1X_{k}} + Y_{1X_{i}}V_{i} = -P_{x_{i}} - Y_{1X_{2}}u_{2} - \overline{Y}_{i} \cdot V_{i} \Big|_{S_{T}} = 0, \\ & \text{rge} \quad u_{1} = v_{1} + Y_{1}, \quad \overline{Y}_{1} = Y_{1t} - y \, Y_{1X_{k}X_{k}} + Y_{1}Y_{1X_{1}}. \end{aligned}$$

Замечание. Всюду в этой работе выражение "задача (в которой определяется давление) однозначно разрешима" будем понимать как утверждение, что давление р определяется с точностью до произвольного слагаемого, не зависящего от х (см. (1)-(3) и (4)-(10)).

Теорема. Если выполнены условия (12), функции Ψ , α , обладают свойством чётности по \mathbf{x}_2 (каждая в своей области определения) и выполнены предположения 1 и 2 (см. к же), то задача (4) - (10) имеет единственное решение \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{p} , причём \mathbf{u}_1 непрерывна в $\overline{\Omega}_1$ и пооизводные её, входящие в (4), непрерывны внутри Ω_1

Доказательство. В соответствии с методом Ротэ [3] разобьём цилиндр Ω_{τ} плоскостями $t_j = j \mathcal{T}$ ($j = 0, 1, 2, \ldots, M$) на слои и предположим, ради с тращения записи, что $T/\mathcal{T} = M$ есть целое число (\mathcal{T} выберем достаточно малым). Обозначим полученные сечения через Ω_{τ} , а их границы через S_{τ} . На каждом из этих слобв, переходя последовательно от слоя Ω_{τ} ; к слою Ω_{τ} , определим функции $V_{\tau \mathcal{T}}$, $u_{\tau \mathcal{T}}$, $u_{\tau \mathcal{T}}$, $v_{\tau \mathcal{T}}$.

На нижнем слое Ω_o положим $v_{iz}(x,t_o) = \alpha_i - \frac{\gamma_i}{t=0}$, $u_{iz}(x,t_o) = \alpha_i$. Тункцию $u_{2z}(x,t_o)$ найдём как решение задачи (5), (9) а задача (6), (10) с $u_i = u_{iz}(x,t_o)$ (i=1, 2) однозначно определяет $p_i(x,t_o)$ [4, 5]. Отметим, что найденные функции u_{2z} , p_z принадлежат $H^{i+1}(\Omega_o)$ и обладают: u_{2z} свойст-

вом нечётности, р — свойством чётности по к $_{2}$. Для определения искомых функций на слое Ω_{1} сначала опре-

делим последовательности функций v_{i} , u_{i} , p_{i} (s=0, 1, 2, ...), являющихся решениями итерационной сист мы

$$\frac{1}{\tau} \left(\stackrel{S+1}{V_{i}} - \stackrel{V}{V_{i}} \right) - \stackrel{S+1}{V_{i}} \stackrel{V}{\chi_{k}} + \stackrel{V}{U_{k}} \stackrel{S+1}{V_{i}} = - \stackrel{S}{P_{X_{i}}} - \stackrel{V}{Y_{i}} \stackrel{V}{V_{i}} - \stackrel{V}{Y_{i}} \stackrel{V}{\chi_{2}} \stackrel{V}{U_{2}} - \stackrel{V}{V_{i}} \stackrel{V}{,}$$
(13)

$$\ddot{u}_{1} = \ddot{V}_{1} + \dot{\gamma}_{1}; \ \dot{p}_{x_{m}x_{m}}^{s+1} = -\left(\ddot{u}_{k}\ddot{u}_{1}x_{k}\right)_{x_{1}} - \left(\ddot{u}_{k}\ddot{u}_{2}x_{k}\right)_{x_{2}}, \ (14), \ (15)$$

гдс $w = w(x,t_o)$, $w = w(x,t_c)$, $w = \tilde{w}(x,t_f)$ (s=1, 2, 3, ...), а граничные условия очевидны. Заметим, что при каждом s задача

для v_1 одновначно разрешима и её решение $v_1 \in H^{l+5}(\overline{\Omega}_1)$,

задача для р однозначно разрешима и р \in Н (Ω_i) [4, 5], причём при каждом с найденные функции обладают свойством чётности по х $_2$. Пусть на некоторой части S_i границы S_i , имеющей положительную меру, функции р равны постоянной величине, т.е.

p (x,t₁) $|_{S_1} = C(t_1)$. Вез потери общности можно считать, что $C(t_1)=0$. Тогда $\|p\|_{W_2}$ эквивалентна $\|p\|_{X}$ [3].

Можно показать, что последовательности $\mathring{\mathbf{v}}_{i}$, $\mathring{\mathbf{v}}_{i}$, $\mathring{\mathbf{v}}_{i}$, ... и

 $\stackrel{\circ}{p}$, $\stackrel{\circ}{p}$, ... являются последовательностями Коши соответствен-

но в пространствах $W_2^2(\Omega_1)$ и $W_2^\prime(\Omega_1)$ и потому сходятся к

функциям $\overline{\mathbf{v}}_{11} \in W_2^2(\Omega_1)$ и $\overline{\mathbf{p}}_1 \in W_2'(\Omega_1)$. Положим $\mathbf{v}_{17}(\mathbf{x},\mathbf{t}_1)$ -

 $=\overline{v}_{11}$, u_{11} (x,t₁)= \overline{v}_{11} + f_{1} (x,t₁), p_{τ} (x,t₁)= \overline{p}_{1} и найдём $\mathcal{U}_{2\mathcal{T}}$ = $u_{2\tau}$ (x,t₁), решиз вадачу (5), (9). Аналогично находим искомые функции на слоях Ω_{2} , Ω_{3} , ..., Ω_{M} .

Предположение 1. При каждом j ($j=1,2,\ldots,M$) $p(x,t_j)/s_j$

= C(t_j), где C(t) достаточно гладкая функция на [0,T], и $\overline{v}_{ij} \in H^{\ell+5}(\overline{\Omega}_j)$, $\overline{p}_i \in H^{\ell+4}(\overline{\Omega}_j)$.

Определим на границах S_{i} (j=0,1,2,..., M) функции Ψ_{2}^{j} , Ψ_{i}^{i} (i, Q=1,2) следующим образом:

 $|\Psi_{2}^{j}|_{s_{j}} = |u_{2T}(x,t_{j})|_{s_{j}}; |\Psi_{ie_{i}}|_{s_{j}} = |u_{iT}(x,t_{j})|_{s_{j}}$

Предположение 2. Существуют единственные достаточно гладкие функции Ψ :, Ψ_{i,ℓ_1} (i. ℓ_1 =1,2), определённые на S_{+} и такие, что

на каждом слое Ω_j (j=0,1,...,M) для u_{f7} выполняется (11) и при $T \longrightarrow 0$

$$\max_{s_j} | \Psi_2^j - \Psi_2 | \longrightarrow 0, \max_{s_j} | \Psi_{i\ell_i}^j - \Psi_{i\ell_i} | \longrightarrow 0$$

При таких предположениях могут быть получены оценки, повводяющие выполнить предельный переход по ~ — О и доказать теорему [6].

ЛИТЕРАТУРА

- 1. Ладыженская О. А. Математические вопросы динамики вяакой несжумаемой зидкости. М.: Наука, 1970.
- 2. Ладыженская О. А. О новых уравнениях для описания движений вязких несжимаемых жидкостей и разрешимости в целом для них краевых задач // Труды МИ им. В. А. Стеклова. -1967. -Т. 102.-С. 85--104.
- 3. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967.
- 4. Ладыженская О. А., Уральцева Н. Н. Линейные и квазилинейные уравнения эллиптического типа. М.: Наука, 1964.
- 5. Тихонов А. Н., Самарский А. А. Уравнения математической фивики. - М.: Наука, 1972.
- 6. Ладыженская О. А. Решение первой краевой задачи в целом для квазилинейных параболических уравнений // Труды Моск. матем. об-ва. -1958. -Т. 7. -С. 149-177.