В.А. Ярмолович, доц., канд. биол. наук; К.В. Зенюк, асп. (БГТУ, г. Минск); О.Ю. Баранов, д-р биол. наук, академик-секретарь (НАН Беларуси, г. Минск); С.В. Пантелеев, зав. лабораторией; И.А. Хархасова, асп.; Л.О. Иващенко, асп. (Институт леса НАН Беларуси, г. Гомель)

ВИДОВОЕ РАЗНООБРАЗИЕ МИКОРИЗНЫХ ГРИБОВ СЕЯНЦЕВ СОСНЫ ОБЫКНОВЕННОЙ И ЕЛИ ЕВРОПЕЙСКОЙ В ЛЕСНЫХ ПИТОМНИКАХ БЕЛАРУСИ

Микориза, как мутуалистический симбиоз грибов и растений, широко распространена в природе. К примеру, основные в Беларуси лесообразующие виды, сосна обыкновенная (*Pinus sylvestris* L.) и ель европейская (*Picea abies* (L.) Karst.), являются облигатными микотрофами. В настоящее время известно, что корни этих деревьев способны заселять около несколько сотен видов микоризных грибов. Грибымикоризообразователи играют важную положительную роль в жизнедеятельности растений-хозяев, помогая добывать воду и минеральные элементы питания, повышая устойчивость к стрессовым факторам окружающей среды и инфекционным болезням [1, 2].

С развитием методов молекулярно-генетической идентификации живых организмов появились новые возможности в изучении видового состава микобиомов на растениях. В Республике Беларусь ДНК-анализ грибных сообществ, ассоциированных с растениями, чаще применялся для идентификации патогенных грибов, преимущественно в лесных питомниках, особенно в случаях, когда по симптомам было сложно установить вид болезнетворного организма [3].

Вместе с тем в республике структура микоризных микобиомов на лесных древесных видах, по нашем мнению, в настоящее время изучена недостаточно подробно. Исследования в этой области позволят улучшить понимание процессов формирования и функционирования симбиоза растений и грибов, а в практическом аспекте — выявить высокоэффективные виды и штаммы грибов для разработки и внедрения современных технологий микоризации посадочного материала.

В рамках данной исследовательской работы сбор полевого материала в виде сеянцев сосны обыкновенной и ели европейской производился в 15 лесных питомниках, расположенных во всех 3-х геоботанических подзонах, выделенных на территории Республики Беларусь. Растения возрастом 1–2 года отбирались в различных отделениях питомника, извлекались из почвы с максимальным сохранением корневых окончаний, этикетировались, помещались в одноразовые полиэтиленовые пакеты и доставлялись в лабораторию, где хранились при температуре -70 °C до момента выделения ДНК. Предварительная лабораторная подготовка заключалась в отделении корневых окончаний длиной 1–5 мм, промывке их в дистиллированной воде, поверхностном обеззараживании в 70% этаноле 2–3 сек, затем еще одной промывке водой. Общее количество корневых окончаний, взятых для анализа – 168 шт. (117 шт. сосны и 51 ели). Выделение ДНК и идентификация видового состава микоризообразующей микрофлоры растений проведены методами метагеномного анализа (фрагментный анализ и секвенирование) [4], полученная генетическая информация верифицировалась в банке данных NCBI.

Как показали проведенные нами исследования, микоризные микобиомы корней сосны и ели характеризовались достаточно большим разнообразием. Количественные характеристики выявленных таксонов приведены в таблице 1.

Таблица 1 — Количество таксонов микоризных грибов, идентифицированных на корневых системах *Pinus sylvestris* L. и *Picea abies* (L.) Karst. в лесных питомниках методами ЛНК-анализа

	Древесный вид						
Показатели	Показатели P. sylvesi		estris P. abies				
	ед.	%	ед.	%			
Выявлено микоризных видов, всего:	41	63,1	25	62,5			
в том числе из отделов:							
– Аскомикота;	23	56,1	16	64,0			
– Базидиомиота;	18	43,9	9	36,0			
по типам микоризы:							
– эктомикоризные виды;	36	87,8	20	80,0			
– эндомикоризные виды	5	12,2	5	20,0			

Всего в лесных питомниках на корневых системах сосны обыкновенной было идентифицировано 65 таксонов грибных организмов, из них микоризных -41 единица (63,1%). На корнях ели идентифицировано 40 видов различной трофической специализации, в их числе микоризных 25 (62,5%).

Больше половины микоризообразователей относятся к сумчатым грибам (56,1% на сосне и 64,0% — на ели), остальные принадлежат базидиальным. Около 80-90% обнаруженных видов грибов образует эктотрофный тип микоризы (основная часть мицелия находится снаружи корня).

Перечень наиболее распространенных видов микоризообразующих грибов, выявленных нами на корневых системах сенцев сосны и ели, представлен в таблице 2.

Таблица 2 – Грибы-микоризообразователи, имеющие наибольшую встречаемость на сосне и ели в лесных питомниках, %

Delpe lucin	P. sylvestris		P. abies		
Таксон (А – аскомикота; Б – базидиомикота)	встречаемость	средняя доля уча- стия в ми- кобиоме	встречаемость	средняя доля уча- стия в ми- кобиоме	
Wilcoxina mikolae (A)	83,0	29,54	90,0	44,60	
Peziza sp.1 uncultured OQ694037.1 (A)	42,6	29,50	25,0	9,19	
Phialocephala fortinii (A)	36,2	6,25	35,0	23,18	
Hyaloscyphaceae my- corrhizal fungus (un- cultured) (A)	36,2	2,26	30,0	9,37	
Helotiaceae sp. (uncultured ectomycorrhizal fungus) (A)	27,7	37,26	40,0	46,21	
Thelephora terrestris (Б)	27,7	1,90	15,0	1,17	
Suillus luteus (Б)	23,4	23,69			
Tylospora sp. (uncultured) (Б)	19,1	3,19	25,0	11,06	
Helotiaceae sp. (A)	17,0	9,52	_	_	
Ilyonectria sp. (A)	14,9	4,65	_	_	
JF519383.1 Uncultured Agaricomycetes RELIS G2 (5)	_	_	20,0	3,53	
Peziza sp.4 uncultured OQ694036.1 (A)	_	_	15,0	12,90	
Peziza sp.2 uncultured OQ694035.1 (A)	_		10,0	90,61	

Среди самых распространенных микоризных видов 70% принадлежат отделу Аскомикота. Наибольшую встречаемость на сосне обыкновенной (на 83,0% растений) имеет аскомицет Wilcoxina mikolae, относящийся к петициевым грибам, он формирует плодовые тела апотеции. Несмотря на имеющиеся в научной литературе сведения, что гриб является широко распространенным видом на представителях рода сосна и многих твердолиственных деревьях [6, 7], его биологические особенности и роль в жизни растений изучены слабо. Кроме того, плодовые тела этого гриба на посадочном материале в лесных питомниках в течение всего времени сбора образцов нами выявлены не были. То же касается некультивируемых видов из таксонов Peziza, Hyaloscyphaceae, Helotiaceae, а также выявленного вида из ро-

да *Ilyonectria*, которые зарегистрированы в базе данных NCBI, но к настоящему времени еще не имеют полного таксономического описания. Из хорошо известных видов корни сосны часто заселяют базидиомицеты *Thelephora terrestris* (телефора земляная) и *Suillus luteus* (масленок обыкновенный). На ели европейской среди распространенных — примерно те же виды, что и на сосне обыкновенной. Исключение составляет гриб *S. luteus*, который имеет достаточно узкую специализацию и формирует микоризу только с представителями рода *Pinus* [8].

Среди распространенных также следует отметить гриб *Phialocephala fortinii*, обнаруженный нами в питомниках более чем на ¹/₃ растений как сосны, так и ели. Он относится к отделу Аскомикота и образует на корнях древесных видов эндомикоризу. Считается, что гриб имеет широкий спектр растений-хозяев и достаточно легко культивируется на искусственных питательных средах [9]. Однако в целом этот вид изучен достаточно слабо и, как эндомикоризный гриб, по нашему мнению, мало перспективен для применения в технологиях искусственной микоризации.

Число микоризных грибов, обнаруживаемых на одном растении, увеличивается с повышением возраста (таблица 3).

Таблица 3 – Количество микоризных видов на 1 корневой системе сеянцев различного возраста (сосна обыкновенная и ель европейская), ед.

centiges passin more sespacia (coetta costiti	centified passin more despacta (coena cobintiodennan in esta edponencian); eg.					
Количество видов	Возраст растений					
количество видов	1 год	2 года				
Эндомикоризные грибы						
Максимальное	3	2				
Минимальное	0	0				
Среднее	0,4±0,1	$0,6\pm0,1$				
Критерий Стьюдента t	0,92					
Эктомикоризные грибы						
Максимальное	8	9				
Минимальное	1	1				
Среднее	3,3±0,4	4,7±0,3				
Критерий Стьюдента t	3,03					

На одном и том же растении выявлялись до 3 эндо— и до 9 эктомикоризных видов. Сравнивая полученные значения количества видов грибов на сеянцах первого и второго года жизни, следует отметить, что достоверно различалось только количество эктомикоризных видов (полученное значение t=3,03 оказалось выше табличного $t_{0,05}=2,00$).

Таким образом, в лесных питомниках Беларуси на корнях сосны обыкновенной нами было выявлено 41 видов микоризообразующих

грибов, на ели европейской -25, около 60% из которых относятся к отделу Аскомикота. Более 80% идентифицированных видов считаются эктормикоризными. Корни каждого растения в питомнике в первый год колонизируют в среднем около 3-х эктомикоризных видов, на второй год их количество возрастает и становится около 5-ти. Среди выявленных нами доминирующих видов большинство оказались слабо изученными, либо вообще не имеющими полного таксономического описания, что требует проведения достаточно подробных исследований в этом направлении.

ЛИТЕРАТУРА

- 1. Mycorrhizae: Sustainable Agriculture and Forestry / Edited by Z. A. Siddiqui, M. S. Akhtar, K. Futai. Springer, 2008. 359 p.
- 2. Смит С. Э., Рид Д. Дж. Микоризный симбиоз. Пер. 3-го англ. издания Е.Ю. Ворониной. Москва: Товарищество научных изданий КМК, 2012. 776 с.
- 3. Баранов О. Ю. [и др.] Молекулярно-генетическая диагностика болезней в лесных питомниках / Лесное и охотничье хозяйство. 2012. №6. с. 21—29.
- 4. Падутов В. Е., Баранов О. Ю., Воропаев Е. В. Методы молекулярно-генетического анализа. – Минск: Юнипол, 2007. – 176 с.
- 6. Wilcoxina mikolae (Chin S.Yang & H.E.Wilcox) Chin S.Yang & Korf. [Электронный ресурс]. URL: https://www.gbif.org/species/5258583 (Дата обращения: 24.01.2024).
- 7. Rudawska M., Leski T. Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine Are Influenced by Age of the Seedlings / Forests. -2021. -12, 134. -16 p.
- 8. Воронина Е. Ю. Микоризы в наземных экосистемах: экологические, физиологические и молекулярно-генетические аспекты микоризных симбиозов / Микология сегодня. Ю. Т. Дьяков, Ю. В. Сергеев (ред.). Том 1. М.: Национальная академия микологии, 2007. С. 142—234.
- 9. Камельчук Я. С. [и др.] Морфолого-культуральные и молекулярно-генетические особенности коллекционных штаммов микоризных грибов *Phialocephala fortinii* и *Pezicula* sp. Доклады Национальной академии наук Беларуси. 2020. Т. 64, № 5. С. 567–573.

Работа выполнена при поддержке БРФФИ, грант №Б22-002.