
УДК 681.324

М. Plonkowski, Catholic University of Lublin, Poland

TRAINING NEURAL NETWORK FOR PATTERN RECOGNITION
The article presents the problems connected with the subjects of neural networks: biological

prototypes of network and their adaptation to a mathematical model, network structure and its training
process. The essential element of this article will be the presentation of a neural network used for rec­
ognition of letter patterns.

Introduction
Computers prove to be extremely useful in numerical calculations, in fields in which a pro­

cess can be easily algorithmised. There is, however, a group of tasks, which are highly problem­
atic for modern computers, yet completely natural and simplistic for humans. This, of course, re­
fers to object recognition and classification tasks. The corollary o f this observation was the idea
of constructing an artificial brain, which would simulate some functions of the human brain.

The human brain as a prototype of neural network
The human brain consists, for the most part, of a large number o f interconnected basic

nerve cells - neurons. Their total number is estimated at 1010.
The basic ability o f neurons is to conduct and create nerve impulses. Each neuron consists

of short branched dendrites, the soma and a long fibre called the axon. Dendrites have a tree
structure, whereby every branch is connected to one neuron. The signals received through the
dendrites reach the soma. The axon is a long appendix of the neuron, which conveys signals from
the soma to other neurons. It is connected with the dendrites o f other neurons by biochemical
junctions called the synapses. The soma is a structure where the dendrites o f the neuron converge,
thus it receives and adds up the signals coming from all its inputs. If the total incoming signal ex­
ceeds a certain threshold level, the neuron becomes activated [1].

The intensity of the signal received by the neuron, which determines neuron activation, de­
pends on the potential o f signals supplied by the dendrites. These signals, received from other
neurons, are modified by synapses, which can amplify or weaken the impulses. Therefore, syn­
apses are the carriers o f memory, significantly determining the functioning of the brain [2].

On the basis o f the description presented above it is possible to design an artificial neuron
simulating the function of the biological one.

Fig. 1. A model of an artificial neuron. Explanations: 1 - inputs; 2 - weights;
3 - summation block; 4 - activation block; 5 - output

This model includes the most important elements o f a biological neuron. Their artificial
equivalents are: inputs (for dendrites), weights (for synapses), summation block (for nucleus),
activation block (for axon hillock) and output (for axon).

Next chapters describes theory of building and learning neural network. On the basis of this
information application was create. We will use it for recognition o f letter patterns and more pre­
cise analysis o f learning process. In particular, this application permit to: change coefficient of
learning process, observe the network errors and survey speed o f learning process. The results
which was given by the application was present in tables and figures. Next, it was describe and
analysis in detail.

Linear and non-linear neural networks

149

A single neuron layer is the simplest neural network. In a layer like this every neuron re
ceives the same set of input signals A ={x^,x2,.. . ,x n')1, However, each one has its own weight

vector tfW - (w\m), ..., w’”)' (where m is the number of the neuron (m = 1, 2, ...,k)). Thus, the

output signal of the m,h neuron can be calculated from the following formula:

S [m) = W (m)TX = .
/=1

The operation of a network defined in such way consists in calculating output signals of in
dividual neurons for the same output vector X. This function reaches its maximum value when
o. = 0, which means that vectors W and A"have the same direction.

The network described above can recognize к different object classes. Each neuron be
comes directed towards a single model object. A given input signal should be assigned to the
same class as the neuron in which the maximum input signal has been reported [3]. It can be con­
cluded that it is the weights that influence network responses in a significant way, thus determin
ing proper functioning of a network.

Non-linear neural network consists of neurons performing non-linear mapping. This means
that the activation function o f such a neuron is a non-linear function. The application of this
function is biologically justified, since biological neurons are non-linear.

Non-linear mapping can be described in the following way:

У = f(s),
w here/is a non-linear function and its parameter s is specified in the same way as in the case of a
linear neuron, namely

П
s = J l Wix i •

i=1

The formula above should be completed by an additional neuron’s threshold coefficient,
which will be subsequently referred to as the bias. If we choose to signify it as w0, our formula
will be as follows:

П
s=yZ w‘x i •

» = o

In this case the input vector X will be completed with supplemented with an additional
elem ent^ =1 [3].

Let us return to the analysis o f the activation function. The unit jump function is its simplest
form, represented by the equation below:

ж > =
[1,5 > 0 ;
[0,5 < 0 ■

A neuron with thus specified activation function is called a perceptron. Only two numbers
are input values of a perceptron: 1 and 0, which can be easily interpreted as ‘true’ and ‘false’.
This kind of neuron classifies input signals by means of a logical function. A perceptron divides a
n - dimensional space by a certain hyperplane into two half-spaces (which are n - dimensional). It
works in such a way that the vectors accepted by the neuron belong to the first half, those rejected
to the second.

The division o f a plane by means of a perceptron depends on it weight values as well as on
the bias coefficient, which can be interpreted as a weight with a zero index. We can see that a

150

г

perceptron is able to solve various problems with the help of a properly situated plane. Still, it
does not allow any change in the character of the performed mapping, which enables it to solve
only linearly separable problems. A classic example of a problem that cannot be solved by a per­
ceptron is “the XOR problem” introduced by Minsky [1]. What cannot be done by a single neu­
ron can still be done by a neural network consisting of several layers.

Apart from the activation function of a perceptron, a sigmoidal function is more frequently
used in neural networks. It has a few useful characteristics, as far as training neural network is
concerned:

- it is continuous, bounded and increasing within the (0,1) interval,
- an easily calculable and continuous derivative,
- the possibility of changing the inclination o f the curve by means of the beta parameter.
The sigmoidal function can be presented by the equation:

1 + exp(-/fc)

It has an easily calculable derivative:

^ = x i - n -as
As we shall see later on in the article, the differentiability of the function is used in the net­

work training process [4].
We have already discussed how a neuron should be constructed. Still, the way o f building

connections is a more important aspect, since it is the connections that determine the capability of
a neural network.

In our example we shall use a three-layer neural network, containing:
- 1 input layer (network input)
- 1 hidden layer
- 1 output layer (network output)
In thus constructed network, each neuron in a given layer connects with every neuron of the

next layer[4].
Being acquainted with basic information concerning neural network, we can discuss a fun­

damental aspect of neural network functioning, namely training a neural network.

Training neural network
The process of learning in this case is the modification of neuron weights, so that eventually

the response to a given input signal is consistent with the model signal.
In order to present the training algorithm in a mathematical way, let us use the following

symbols:
- L - the number o f layers in the network;
- Nk - the number o f neurons in the layer, k=\,..., L\
- No - the number o f input signals in the network j
- y (k) = - output signal vector in the kfh layer, k= 1,..., L\

- x {k) = (x ^ x ^ j ̂ - input signal vector o f the 1ih layer, 1 L;

- = (v $ \ . . i ̂ - weight vector of the ith neuron, /'=1,..., Nk in the k,h layer, k= \ ,..., L\

- d (k) - - model signal vector o f the kfh layer, h= 1,..., L.
In the kind o f learning process we have been discussing, input vector x is fed into the net­

work’s input along with the desired output vector d. Both o f them constitute the so-called ‘train­
ing pair.’ In successive steps of network training, output vector x o f the network, which is the re­

151

sponse to input vector x, is calculated. Given model signal d and у (the output value of the net­
work), we can calculate the error made by the ith neuron:

s ™ = d } k)- y ™ .

The total error made by the network is specified as sum of squares o f the errors at the out­
puts of individual neurons o f the last layer (L). It is also called mean square error [2]:

Q = b f - 1 ^ - у ^ У .
/=1 /=1

The aim of the training process is to minimise the mean square error. This can be achieved
by adjusting the weights o f individual vectors. The training process ends when the value of the
error made by the network falls below the fixed value.

Let us now take a look at the core of training process: modification o f weight vectors of in­
dividual neurons. Method o f steepest ascent is the most frequently used method in determining
the direction o f changes of the weight vector. This algorithm assumes the direction of negative
vector of the error function gradient as the direction of mineralization. It can be presented in the
following way:

where n is the step number.
The /л coefficient specifies the scale o f changes occurring during individual steps of the

training algorithm. The choice o f proper value for this coefficient is the subject we shall deal witli
later on.

The application o f gradient method in training process requires knowing the error function
gradient relative to all network layers. However, this task can be directly performed only in rela­
tion to the output layer, owing to the fact that only model values o f the network, which are ex­
pected to appear at the output o f the last layer, are given [2].

The calculation of errors made by hidden layers is carried out with the help of the back-
propagation algorithm: knowing a specific error value for a given neuron we can ‘project’ the er­
ror back to all the neurons whose output signals constitute the input for this particular neuron [3].

Let us now derive formulas, which will be necessary in calculating weight adjustments in
individual neuron layers. According to gradient method of network training, we can describe
weight adjustment by the following formula:

4 * 4 « + i) = 4*> (»)+ M - ^ L) .

The derivative o f - is:
M - \ n)

d g (”) = dQ(n) ds{P (n) _ dQ(n) ^ (k)
dw\p (n) d$P (n) 8w\P (n) dsfk) (n) 7

Let us represent S p («) = —̂ •

The weight adjustment algorithm will thus take the following form:

w p (n +1) = w p (n) + 2jUSpx(p .

152

The technique of calculating S\k) varies across individual layers. At first, we can calculate
its value for the final layer o f the network, since we know the desired set o f values at the output.

S ,(i) = 1 dQ(n)
д]£ / {n)

m=1 1 ds\')2 (ri)
2 ds\L\ n) 2 ds\L\ n) 2 ds\L\n)

1 d t f L\ n) - y \ L\ n) f n U M L)(n)
ds.L)(n)

= s L\n) = s \L\ n) f { s ^ \ n))
ds\L)(ri)

'/rW l

The calculations for the previous layers are as follows:

gm = 1 д Щ = 1 ^ ' dQ(n) 8 s™ (n) =
‘ 2 &<*>(») 2 ± 1д/тш ,(п) a>»>(i>)

= 5]г<**|)(П)№2*,)(П) / ,(;>;‘> (п)) = / 'й , , («)) £ ^ “ ')(»)«'2*,,(").
m=l

Obviously, the calculations have to be performed from the input to the output layer if the
value of S-k) is to be determined. For the above calculations to be possible, function /has to be
differentiable. This requirement is met by the already mentioned sigmoidal function [2].

Besides the indisputable advantage of the backpropagation algorithm, namely reducing the
calculation complexity of the training algorithm, there are some disadvantages. The algorithm
does not guarantee that during the training process a global minimum of the error function can be
found. It is possible that the training process will end in one o f the global minimums. Another
drawback of the backpropagation algorithm is a great number of iterations leading to conver­
gence of the training process. What is more, if we set the training coefficient ц to too small a
value, it can significantly prolong the training process. But choosing too large p. value may lead to
oscillation [1].

A solution to these problems is to apply a momentum backpropagation method. It introduces
a certain degree of inertia (momentum) into the process of updating the weights. The value of
momentum is proportional to weight alteration in the previous iteration. It prevents too large
changes of weights from occurring, hence the process becomes more fluent. A momentum back-
propagation method can be described in the

following way:
w f \ n + \) = w f] (n) -г 2*.г\к)Г (sjk) (n)) x f }+

Constant a is called the momentum coefficient. Its value is taken from the range (0,1] and
determines how strongly the momentum influences weight alteration. For high a values (close to
1) the influence is very strong, for a near zero it is very weak.

A detailed analysis of coefficient settings will be provided in the next chapter.

A practical example of training a neural network
In the present chapter we shall present a neural network whose task will be to recognize 26

capital letters of the alphabet. We shall also discuss problems such as representing character pat­
terns as vectors, choice of network architecture, network training (along with an analysis of net­
work training parameters) and analyse the number of errors made by the network.

Each character will be represented as a 12 x 16 matrix, whose elements are only 0 and 1.
‘0’ stands for a white pixel, ‘ Г - a black one.

Our network will consist o f three layers. Layer 1 will contain 12T6=192 neurons, for each

153

one is to learn only one letter o f the alphabet. The choice of the number of neurons in the hidden
layer can be made with the help of the following formula:

^ ukryta ~ -\J ̂ wejsciowa ’ ^ wyjsciowa ’

which means that the number o f neurons in the hidden layer equals approximately the square root
of the product of the number o f neurons in the input and the output layer. In our example there
are 70 neurons in the hidden layer.

Given the network architecture, we can specify the assumptions o f the training process.
The training sequence will comprise 5 sets of 26 characters printed using five different

fonts. Thus, it will contain 130 elements of the training sequence.
The patterns are given below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJ KLMNOPQRSTU VWXVZ
ABCDEF6HIJKL.MNQPQR5TU VVI/XYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABC DEI’G IIIJ KLMK OPQRSTU VW X YZ

On the basis o f the above bitmaps, training sequences were made. Each character has been
selected and scaled to the size o f 12 by 16 pixels, according to the assumptions mentioned earlier.
The training sequences will be fed into the network in random order, since presenting them in
cyclical order may cause the weight adjustments to cancel out, and, consequently, slow down the
process of learning.

The process of feeding the whole training sequence is called an epoch. In our considerations
we have specified the number o f epochs as 250. Each training process was repeated three times.
The results obtained during the three tests were almost identical (they varied by approximately 0.1).

On the basis o f this process, let us now analyse the influence o f two coefficients: ц and a on
the speed of network learning. Let us begin with the /j. coefficient used in the backpropagation
method.

The results o f the experiment are in the table 1.
Table 1

The influence of the coefficient on the learning rate of the network
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

117,2245 115,9895
49,87904 23,01466
0,466676 0,376304
0,21413 0,18094
0,1365 0,117258

0,099354 0,086073

0 150,523 132,7311 127,1403 123,2504 121,0159 119,5726 118,4252
50 124,6297 124,3155 124,1655 123,8719 122,3748 110,7881 91,01443
100 124,6375 124,315 102,7759 19,81228 2,018052 1,015179 0,632491
150 124,6535 98,61039 3,347677 0,91607 0,50515 0,347953 0,263707
200 124,418 10,98638 0,877308 0,427995 0,277811 0,203805 0,163145
250 116,1293 1,729098 0,481213 0,272972 0,188995 0,142406 0,11699

154

Fig. 2. The influence of the ц coefficient on the learning rate of the network

The analysis of the results shows that all coefficients, with the exception o f //=0.1, ascertain
the convergence o f the training process. In principle, the coefficients from the interval [0.5, 0.9]
ensure a similar tempo of convergence. After only 150 epochs the network error falls below 0.5.
It is a very small network error value. The network is very stable, the descent rate is fast, and with
the number of epochs at the level of 150, it takes the training algorithm 17 seconds to learn (the
experiment was carried out on a computer with a 2,6 GHz CPU).

How does the a coefficient influence the speed o f learning? In this case we shall use apply
the momentum backpropagation method. It uses two coefficients: ^ and a. Investigating the value
of a, we set the constant value o f ,«=0.5. The results are in the table2:

Table 2
The influence of the a coefficient on the learning rate of the network.

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
0 121,1221 121,2325 123,2759 123,6555 124,8441 126,269 128,0975 130,4903 130,7399
50 116,2281 107,7815 93,46853 51,93244 6,073188 1,26063 0,524166 1,258662 129,9997
100 1,289635 0,879033 0,627306 0,430178 0,300274 0,209532 0,132224 1,080406 129,9993
150 0,406591 0,325534 0,259389 0,198361 0,149847 0,111786 0,074842 1,047854 125,0217
200 0,233933 0,194746 0,159995 0,126803 0,098449 0,075364 0,051816 1,03395 125,0066
250 0,162204 0,137438 0,114577 0,092453 0,072829 0,056537 0,039497 1,026255 125,0039

a 50 100 150 200 250

The number of epochs

Fig. 3. The influence of the a coefficient on the learning rate of the network

155

The results shown above suggest the convergence of the training process for all the values
of a, except for a=0,9. Even increasing the number of epochs up to 1000 does not ensure the con­
vergence of the training process for this value o f the coefficient. What follows is that the mo­
mentum amplitudes are too high. For a from the interval [0,1; 0,4] the network error level falls
below 1,2 after 100 epochs. However, for a from the interval [0,5; 0,8] the error value does so
after only 50 epochs. As we can see, an appropriate parameter setting can reduce the number of
required training steps even by half.

Summing up both abovementioned methods, it is clear that the momentum backpropagation
method considerably increases network learning rate. Notice the error value o f the network
trained by the backpropagation method (with //=0,5) after 150 epochs. A network trained by the
momentum backpropagation method (with //=0,5 and a =0,7) reaches the same value o f error af­
ter only 50 epochs. This yields a threefold acceleration of the learning process.

What error function value ensures almost 100% correctness o f the network’s responses?
Multiple tests using various test sets enable us to estimate the threshold value at around 7.

REFERENCES

1. K. Kawaguchi. A multithreaded software model for backpropagation neural network
applications. The University of Texas at El Paso, July 2000,
http: //www. ece. utep. edu/research/web fuzzy/docs/kk-thesis/kk-thesi s-html/

2. W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz. Sieci Neuronowe. Akademicka
Oficyna Wydawnicza Exit, Warszawa, 2000.

3. R. Tadeusiewicz. Sieci Neuronowe..
4. P. Crochat, D. Franklin. Back-Propagation Neural Network Tutorial. University of

Wollongong, Australia,
http://ieee.uow.edu.au/~daniel/software/libneuraI/BPN_tutorial/BPN_English/BPN_English/

156

http://ieee.uow.edu.au/~daniel/software/libneuraI/BPN_tutorial/BPN_English/BPN_English/

